Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Plant Dis ; 107(1): 34-37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35787011

RESUMO

In this study, methods of Actinidia chlorotic ringspot-associated virus (AcCRaV) elimination by shoot tip culture, thermotherapy followed by shoot tip culture, and chemotherapy followed by shoot tip culture were explored. The results showed that the AcCRaV elimination rate was 23.3% when the secondary shoot tip culture method was used and when the shoot tip length was less than 0.5 mm. The AcCRaV elimination rate was 100% when thermotherapy (36°C [day] and 32°C [night]) was applied for 20 days followed by shoot tip culture (shoot tip length less than 1.0 mm). When shoot segments were treated with ribavirin at 15 µg/ml for 2 months followed by shoot tip culture, the elimination rate of AcCRaV was 100% (shoot tip length less than 1.0 mm). When shoot segments were treated with ribavirin at 25 µg/ml for 2 months followed by shoot tip culture, the elimination rate of AcCRaV was 100% (shoot tip length less than 1.5 mm). This is the first report on kiwifruit virus elimination methods.


Assuntos
Actinidia , Vírus , Ribavirina/farmacologia , Brotos de Planta , Frutas
2.
Plant Dis ; 106(5): 1321-1329, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34941370

RESUMO

Kiwifruit (Actinidia spp.) is an economically important fruit crop worldwide. Before 2010, kiwifruit viruses had not received much attention; since then, more than 20 viruses infecting kiwifruit have been discovered. Some of these viruses cause severe yellowing, mosaic, necrosis, ringspots, and other symptoms on leaves, seriously impacting yield and quality. Many of these viruses are widely distributed. This review summarizes recent research advances in the identification, genomic variation, distribution, transmission, detection, incidence, prevention, and control of kiwifruit viruses and proposes directions for future research. Using virus-tested propagation material is the most economical and effective method for controlling kiwifruit viruses.


Assuntos
Actinidia , Vírus , Frutas/genética , Folhas de Planta
3.
Plant Dis ; 106(12): 3120-3126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35522957

RESUMO

China, the center of origin of kiwifruit, has the largest kiwifruit cultivation and production area worldwide, and Shaanxi Province is the major kiwifruit-growing region in China. However, our knowledge of kiwifruit viruses is largely skewed toward their pathology in cultivated orchards, and little is known about viral diversity in wild kiwifruit. To determine the viral diversity in cultivated and wild kiwifruit, 32 cultivated kiwifruit samples from Shaanxi Province and 30 wild kiwifruit samples from the Qinling Mountains were collected and subjected to high-throughput sequencing in this study. Eleven known viruses were found among the 32 cultivated kiwifruit samples, and 8 known viruses and 2 new viruses were found among the 30 wild kiwifruit samples. One of the two new viruses, Actinidia yellowing virus 3 (AcYV3), a member of the genus Idaeovirus, may be associated with severe yellowing of kiwifruit leaves. In addition, more than 50 nearly full-length genome sequences of known viruses were obtained. The detection rates, recombination, and molecular variation of these viruses were further analyzed. The results obtained in this study provide valuable information for understanding the virome of cultivated and wild kiwifruit.


Assuntos
Actinidia , Vírus de RNA , Vírus , Frutas , Folhas de Planta
4.
Viruses ; 14(11)2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366558

RESUMO

Viruses cause important yield losses in kiwifruit. Here, we studied the occurrence and population structure of the major kiwifruit viruses in the Sichuan province of China. RT-PCR results showed the presence of Actinidia virus A (AcVA), Actinidia virus B (AcVB), Actinidia chlorotic ringspot-associated virus (AcCRaV), and the cucumber mosaic virus (CMV). AcCRaV was widely distributed, followed by CMV. These two viruses were often detected in co-infection with AcVA and AcVB. The virus detection rate was positively correlated with vine age. Four phylogenetic groups of AcVA and AcVB were identified, with AcVA isolates clustering mainly in subgroup I, and AcVB isolates clustering mainly in subgroups II, III, and IV. All CMV isolates clustered in subgroup II, and AcCRaV isolates clustered in subgroup IA. The genome of AcVA and AcCRaV was under negative selection pressure, while the genome of AcVB and CMV was under positive selection pressure. All the viruses, except AcVB, were in a state of expansion. The full-length genome of the most widely distributed AcCRaV isolate in kiwifruits in the Sichuan province was characterized by sequencing. Unique eight-nucleotide (TTTTTGAT) repeats were found in the 5'-terminal non-coding region of the AcCRaV RNA3 in a possible association with reduced disease symptoms. This is the first study of kiwifruit viruses in Sichuan.


Assuntos
Actinidia , Cucumovirus , Infecções por Citomegalovirus , Flexiviridae , Vírus , Filogenia , Doenças das Plantas , Cucumovirus/genética , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA