Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(39): e2302706, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246262

RESUMO

Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu2 S nanocages (CoS/Cu2 S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na+ /e- transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu2 S@C-NC as anode displays a high capacity of 435.3 mAh g-1 after 1000 cycles at 2.0 A g-1 (≈3.4 C). Under a higher rate of 10.0 A g-1 (≈17 C), a capacity of as high as 347.2 mAh g-1 is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na+ /e- transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.

2.
Small ; 18(12): e2107365, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35106930

RESUMO

The further demand for electric vehicles and smart grids prompts that the comprehensive function of lithium-ion batteries (LIBs) has been improved greatly. However, due to sluggish Li+ diffusion rate, thermal runway and volume expansion, the commercial graphite as an important part of LIBs is not suitable for fast-charging. Herein, nano-sized Nb14 W3 O44 blocks are effectively synthesized as a fast-charge anode material. The nano-sized structure provides shorter Li+ diffusion pathway in the solid phase than micro-sized materials by several orders of magnitude, corresponding to accelerating the Li+ diffusion rate, which is beneficial for fast-charge characteristics. Consequently, Nb14 W3 O44 displays excellent long-term cycling life (135 mAh g-1 over 1000 cycles at 10 C) and rate capability at ultra-high current density (≈103.9 mAh g-1 , 100 C) in half-cells. In situ X-ray diffraction and Raman combined with scanning electron microscopy clearly confirms the stability of crystal and microstructure. Furthermore, the fabricated Nb14 W3 O44 ||LiFePO4 full cells exhibit a remarkable power density and demonstrate a reversible specific capacity. The pouch cell delivers long cycling life (the capacity retention is as high as 96.6% at 10 C after 5000 cycles) and high-safety performance. Therefore, nano-sized Nb14 W3 O44 could be recognized as a promising fast-charge anode toward next-generation practical LIBs.

3.
Small ; 17(23): e2100685, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33908704

RESUMO

Bismuth-antimony alloy is considered as a promising potassium ion battery anode because of its combination of the high theoretical capacity of antimony and the excellent rate capacity of bismuth. However, the large volume change and sluggish reaction kinetic upon cycling have triggered severe capacity fading and poor rate performance. Herein, a nanoconfined BiSb in tremella-like carbon microspheres (BiSb@TCS) are delicately designed to address these issues. As-prepared BiSb@TCS renders an outstanding potassium-storage performance with a reversible capacity of 181 mAh g-1 after ultralong 5700 cycles at a current density of 2 A g-1 , and an excellent rate capacity of 119.3 mAh g-1 at 6 A g-1 . Such a superior performance can be ascribed to the delicate microstructure. The self-assembled carbon microspheres can strengthen integral structure and effectively accommodate the volume expansion of BiSb nanoparticles, and 2D carbon nanowalls in carbon microspheres can provide fast ion/electron diffusion dynamic. Theoretical calculation also suggests a thermodynamic feasibility of alloyed BiSb nanoparticles for storing potassium ion. Such a work shows that BiSb@TCS possesses a great potential to be a high-performance anode of potassium ion batteries. The rational designing of multiscaled structure would be instructive to the exploitation of other energy-storage materials.

4.
Nano Lett ; 20(4): 2871-2878, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186887

RESUMO

Inorganic solid-state electrolyte (SSE) has offered a promising option for the safe rechargeable Li metal batteries. However, the solid-solid interfacial incompatibility greatly hampers the practical use. The interface becomes even worse during repeated Li plating/stripping, especially under high current density and long cycling operation. To promise an intimate contact and uniform Li deposition during cycling, we herein demonstrate a stress self-adapted Li/Garnet interface by integrating Li foil with a hyperelastic substrate. Consecutive and conformal physical contact was ensured at Li/Garnet interface during Li plating/stripping, therefore dissipating the localized stress, suppressing Li dendrite formation, and preventing Garnet cracks. Record long cycling life over 5000 cycles was achieved with the ultrasmall hysteresis of 55 mV at high current density of 0.2 mA cm-2. Our strategy provides a new way to stabilize Li/Garnet interface from the perspective of anode mechanical regulation and paves the way for the next generation solid-state Li metal batteries.

5.
Angew Chem Int Ed Engl ; 59(38): 16705-16711, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32530502

RESUMO

Sodium metal is a promising anode, but uneven Na deposition with a dendrite growth seriously impedes its application. Herein, a fibrous hydroxylated MXene/carbon nanotubes (h-Ti3 C2 /CNTs) composite is designed as a scaffold for dendrite-free Na metal electrodes. This composite displays fast Na+ /electron transport kinetics and good thermal conductivity and mechanical properties. The h-Ti3 C2 contains abundant sodiophilic functional groups, which play a significant role in inducing homogeneous nucleation of Na. Meanwhile, CNTs provide high tensile strength and ease of film-forming. As a result, h-Ti3 C2 /CNTs exhibit a high average Coulombic efficiency of 99.2 % and no dendrite after 1000 cycles. The h-Ti3 C2 /CNTs/Na based symmetric cells show a long lifespan over 4000 h at 1.0 mA cm-2 with a capacity of 1.0 mAh cm-2 . Furthermore, Na-O2 batteries with a h-Ti3 C2 /CNTs/Na anode exhibit a low potential gap of 0.11 V after an initial 70 cycles.

6.
Angew Chem Int Ed Engl ; 57(50): 16370-16374, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30320428

RESUMO

Sodium-ion batteries (SIBs) are a promising alternative for the large-scale energy storage owing to the natural abundance of sodium. However, the practical application of SIBs is still hindered by the low working voltage, poor rate performance, and insufficient cycling stability. A sodium-ion based full battery using a multi-ion design is now presented. The optimized full batteries delivered a high working voltage of about 4.0 V, which is the best result of reported sodium-ion full batteries. Moreover, this multi-ion battery exhibited good rate performance up to 30 C and a high capacity retention of 95 % over 500 cycles at 5 C. Although the electrochemical performance of this multi-ion battery may be further enhanced via optimizing electrolyte and electrode materials for example, the results presented clearly indicate the feasibility of this multi-ion strategy to improve the electrochemical performance of SIBs for possible energy storage applications.

7.
J Colloid Interface Sci ; 673: 496-503, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38879991

RESUMO

Zinc-based flow batteries hold potential promise for extensive energy storage on a large scale owing to their high energy density and low cost. However, their widespread implementation is impeded by challenges associated with zinc (Zn) dendrites and side reactions like the hydrogen evolution reaction on the anode. Theoretical calculations have confirmed that glycine (Gly) has the ability to coordinate with Zn2+, displacing H2O molecules in the solvation shell, thereby restoring the solvation structure of Zn2+ and promoting the release of reactive Zn2+ during plating/stripping processes. As a result, the incorporation of Gly into the anolyte of a neutral zinc-ferricyanide (Zn/Fe) flow battery (ZIFB) effectively inhibits the formation of Zn dendrites and impedes side reactions, leading to highly reversible and stable Zn plating/stripping reactions. A Zn||Zn symmetric flow battery utilizing Gly in the anolyte demonstrated extended cycling durability, lasting over 550 h at a current density of 30 mA cm-2, in contrast to the failure of a Gly-free anolyte system after 150 h. Notably, this approach facilitates a neutral ZIFB achieving an impressive energy efficiency exceeding 70 %, even at a high current density of 70 mA cm-2, with a cycle lifespan exceeding 800 h (33 days) at a current density of 30 mA cm-2. Conversely, the neutral ZIFB lacking Gly showed a significantly shorter cycle life of only 260 h under identical operational conditions (30 mA cm-2). Due to the economic benefits of Gly and the proposed user-friendly route, this strategy demonstrates great potential for promoting the widespread adoption of zinc-based flow batteries with improved performance for practical use.

8.
ChemSusChem ; 17(4): e202301589, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38143242

RESUMO

Rechargeable magnesium batteries (RMBs) become a highly promising candidate for the large-scale energy storage system by right of the high volumetric capacity, intrinsic safety and abundant resources of Mg anode. However, the uneven Mg stripping and large overpotential will cause a severe pitting perforation and the followed failure of Mg anode. Herein, we proposed a high-performance binary Mg-1 at% Gd alloy anode prepared by the melting and hot extrusion. The introduction of 1 at% Gd element can effectively reduce the Mg2+ diffusion energy barrier (0.34 eV) on alloy surface and induces the formation of a robust and low-resistance electrolyte/anode interphase, thus enabling a uniform and fast Mg plating/stripping. As a result, the Mg-1 at.% Gd anode displays a largely enhanced life of 220 h and a low overpotential of 213 mV at a high current density of 5.0 mA cm-2 with 2.5 mAh cm-2 . Moreover, the assembled Mg-1 at.% Gd//Mo6 S8 full cell delivers a high rate performance (73.5 mAh g-1 at 5 C) and ultralong cycling stability of 8000 cycles at 5 C. This work brings new insights to design the new-type and practical Mg alloy anodes for commercial RMBs.

9.
Adv Mater ; : e2406145, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221543

RESUMO

Large-scale application of low-cost, high-safety and environment-compatible aqueous Zn metal batteries (ZMBs) is hindered by Zn dendrite failure and side reactions. Herein, highly reversible ZMBs are obtained by addition of trace D-pantothenate calcium additives to engineer a dual-functional interfacial layer, which is enabled by a bioinspired gating effect for excluding competitive free water near Zn surface due to the trapping and immobilization of water by hydroxyl groups, and guiding target Zn2+ transport across interface through carboxyl groups of pantothenate anions, as well as a dynamic electrostatic shielding effect around Zn protuberances from Ca2+ cations to ensure uniform Zn2+ deposition. In consequence, interfacial side reactions are perfectly inhibited owing to reduced water molecules reaching Zn surface, and the uniform and compact deposition of Zn2+ is achieved due to promoted Zn2+ transport and deposition kinetics. The ultra-stable symmetric cells with beyond 9000 h at 0.5 mA cm-2 with 0.5 mAh cm-2 and over 5000 h at 5 mA cm-2 with 1 mAh cm-2, and an average Coulombic efficiency of 99.8% at 1 mA cm-2 with 1 mAh cm-2, are amazingly realized. The regulated-electrolyte demonstrates high compatibility with verified cathodes for stable full cells. This work opens a brand-new pathway to regulate Zn/electrolyte interface to promise reversible ZMBs.

10.
ACS Appl Mater Interfaces ; 15(4): 5180-5190, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656080

RESUMO

Zinc-ion capacitors (ZICs) gain enormous attraction for their high power density, low cost, and long life, but their poor low-temperature performance is still a challenge due to the dissatisfactory freezing point of aqueous electrolyte solution. It is difficult for them to meet the requirements in cold environments as well as the extreme low temperature and severe temperature fluctuations in aerospace environments. Herein, ethanol (EtOH) solvent with ZnCl2 is used as an electrolyte to address these issues. Benefiting from the low freezing point (-114 °C) of EtOH, the ZIC with the ZnCl2/EtOH electrolyte can be operated at an ultralow temperature of -78 °C. It also demonstrates long cycling stability over 30,000 cycles. Such an enhancement is attributed to the unique properties of [ZnCl(EtOH)5]+ that can stabilize the coordination environment of Zn2+, slow the diffusivity, and raise the nucleation overpotential, leading to uniform Zn plating/stripping and subsequently suppressing dendrite growth. Meanwhile, the lower activation energy in ZnCl2/EtOH than that in ZnSO4/H2O electrolytes endows the ZIC excellent charge transfer properties. This work provides a fascinating electrolyte and a feasible pathway for ultra-low-temperature ZICs with a long cycling life.

11.
ACS Nano ; 17(19): 19275-19287, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37781928

RESUMO

Employing metal anodes can greatly increase the volumetric/gravimetric energy density versus a conventional ion-insertion anode. However, metal anodes are plagued by dendrites, corrosion, and interfacial side reaction issues. Herein, a continuous and flexible amorphous MOF layer was successfully synthesized and used as a protective layer on metal anodes. Compared with the crystalline MOF layer, the continuous amorphous MOF layer can inhibit dendrite growth at the grain boundary and eliminate ion migration near the grain boundary, showing high interfacial adhesion and a large ion migration number (tZn2+ = 0.75). In addition, the continuous amorphous MOF layer can effectively solve several key challenges, e.g., corrosion of the zinc anode, hydrogen evolution reaction, and dendrite growth on the zinc surface. The prepared Zn anode with the continuous amorphous MOF (A-MOF) layer exhibited an ultralong cycling life (around one year, more than 7900 h) and a low overpotential (<40 mV), which is 12 times higher than that of the crystalline MOF protective layer. Even at 10 mA cm-2, it still showed high stability for more than 5500 cycles (1200 h). The enhanced performance is realized for full cells paired with a MnO2 cathode. In addition, a flexible symmetrical battery with the Zn@A-ZIF-8 anode exhibited good cyclability under different bending angles (0°, 90°, and 180°). More importantly, various metal substrates were successfully coated with compact A-ZIF-8. The A-ZIF-8 layer can obviously improve the stability of other metal anodes, including those of Mg and Al. These results not only demonstrate the high potential of amorphous MOF-decorated Zn anodes for AZIBs but also propose a type of protective layer for metal anodes.

12.
ACS Nano ; 17(24): 25291-25300, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085605

RESUMO

The high dissolution of polyiodides and unstable interface at the anode/electrolyte severely restrict the practical applications of rechargeable aqueous Zn-iodine batteries. Herein, we develop a zinc ion-based montmorillonite (ZMT) electrolyte membrane for synergizing ion sieve and solvation regulation to achieve highly stable Zn-iodine batteries. The rich M-O band and special cation-selective transport channel in ZMT locally tailor the solvation sheath around Zn2+ and therefore achieve high transference number (t+ = 0.72), benefiting for uniform and reversible deposition/stripping of Zn. Meanwhile, the mechanisms for three-step polyiodide generation and shuttle-induced Zn corrosion are highlighted by in situ characterization techniques. It is confirmed that the strong chemical adsorption between O atoms in ZMT and polyiodides species is the key to effectively inhibit the shuffle effect and side reactions. Consequently, the ZMT-based Zn-iodine battery delivers a high capacity of 0.45 mAh cm-2 at 1 mA cm-2 with a much improved Coulombic efficiency of 99.5% and outstanding capacity retention of 95% after 13 500 cycles at 10 mA cm-2. Moreover, owing to its high durability and chemical inertness and structural stability, ZMT-based electrolyte membranes can be recycled and applied in double-sided pouch cells, delivering a high areal capacity of 2.4 mAh cm-2 at 1 mA cm-2.

13.
ACS Appl Mater Interfaces ; 15(12): 15409-15419, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36924036

RESUMO

A two-dimensional silicon nanosheet (2D Si NS) is promising as a lithium-ion battery anode. However, insufficient cycling life at high current density hampers its practical applications due to its easy fragileness. Rationally engineering the Si micro/nanostructure is promising to address this issue. Unfortunately, the precise construction of a dedicated micro/nanostructure into 2D Si NS meets serious challenges. Herein, a facile strategy is developed to synthesize a sandwich-like honeycomb Si NS/solid Si NS/honeycomb Si NS (h/s/h-Si NS) anode through self-assembled preparation of a sandwich-like honeycomb SiO2 NS/solid SiO2 NS/honeycomb SiO2 NS template, followed by magnesiothermic reduction. This unique structure effectively enhances the mechanical strength, enlarges the specific surface area, and reserves sufficient space to accommodate the anode volume change. A conductive carbon layer is further coated on the h/s/h-Si NS (h/s/h-Si@C NS) to construct a stable electrode/electrolyte interface. The optimal h/s/h-Si@C NS displays outstanding performance with high initial Coulombic efficiency (86%), high reversible capacity (1624 mAh g-1 after 100 cycles at 1000 mA g-1), good rate capability (over 1000 mAh g-1 at 4000 mA g-1), and long cycling life even at 4000 mA g-1 (93% retained capacity after 1000 cycles). This work provides a new strategy for constructing high-performance Si electrodes for lithium-ion battery applications.

14.
Adv Mater ; 35(38): e2303460, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269455

RESUMO

Ultrathin and super-toughness gel polymer electrolytes (GPEs) are the key enabling technology for durable, safe, and high-energy density solid-state lithium metal batteries (SSLMBs) but extremely challenging. However, GPEs with limited uniformity and continuity exhibit an uneven Li+ flux distribution, leading to nonuniform deposition. Herein, a fiber patterning strategy for developing and engineering ultrathin (16 µm) fibrous GPEs with high ionic conductivity (≈0.4 mS cm-1 ) and superior mechanical toughness (≈613%) for durable and safe SSLMBs is proposed. The special patterned structure provides fast Li+ transport channels and tailoring solvation structure of traditional LiPF6 -based carbonate electrolyte, enabling rapid ionic transfer kinetics and uniform Li+ flux, and boosting stability against Li anodes, thus realizing ultralong Li plating/stripping in the symmetrical cell over 3000 h at 1.0 mA cm-2 , 1.0 mAh cm-2 . Moreover, the SSLMBs with high LiFePO4 loading of 10.58 mg cm-2 deliver ultralong stable cycling life over 1570 cycles at 1.0 C with 92.5% capacity retention and excellent rate capacity of 129.8 mAh g-1 at 5.0 C with a cut-off voltage of 4.2 V (100% depth-of-discharge). Patterned GPEs systems are powerful strategies for producing durable and safe SSLMBs.

15.
J Colloid Interface Sci ; 649: 372-383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37354794

RESUMO

Aqueous zinc-ion batteries (AZIBs) are considered as a promising alternative to lithium-ion batteries for stationary energy storage due to their environmental benignity and cost-effectiveness. However, the development of AZIBs continues to be plagued by a lack of cathode materials with high specific capacity and superior lifetime. Herein, we in-situ synthesize amorphous VO2@rGO assisted by controlling the charging cut-off voltage. Experimental results and theoretical calculations confirm that the amorphous VO2(A)@rGO can effectively reduce the migration energy barrier of Zn2+, improve the conductivity of the electrode, and promote the insertion/extraction of Zn2+. Consequently, the Zn//VO2(A)@rGO battery exhibits an ultra-high specific capacity of 527.0 mAh·g-1 at 1 A·g-1 after 100 cycles, an ultra-long cycle stability of 183.4 mAh·g-1 at 20 A·g-1 after 30,000 cycles, and an energy of 316.1 Wh·Kg-1 at a power density of 6082.9 W·Kg-1 power density. Meanwhile, we reveal that the amorphous VO2@rGO electrode follows a hybrid mechanism of classical Zn2+ insertion/de-insertion and the reversible phase transition from amorphous VO2 to V2O3. This study highlights that in-situ preparation of amorphous VO2@rGO cathode materials by controlling the charging voltage interval, opening up further possibilities for the development of high-performance AZIB cathodes.

16.
J Colloid Interface Sci ; 628(Pt B): 682-690, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027778

RESUMO

Prussian blue analogues are considered as promising supercapacitor electrode materials due to their high theoretical capacitance and low cost. Yet, they suffer from poor electronic conductivity and cycling life. Here, a redox dye polymer, poly(azure C) (PAC), is in-situ grown uniformly on CoFe Prussian blue analogue (CoFePBA). As a polymer mediator, the PAC coating on each PBA not only enhances the electronic conductivity and surface area, but also improves the structural stability and specific capacitance of PBA. As a result, the optimized CoFePBA@PAC possesses ultrahigh specific capacitance (968.67 F g-1 at 1 A g-1), superior rate performance (665.78 F g-1 at 10 A g-1), and excellent long-cycling stability (92.45% capacity retention after 2000 cycles). As an application, a fabricated CoFePBA@PAC//AC asymmetric supercapacitor (AC = activated carbon) maintains 84.7% capacitance retention in 2000 cycles at 1 A g-1 and displays a superior specific energy of 29.16 W h kg-1 at the power density of 799.78 W kg-1. These results demonstrate that redox dye polymer-coated PBAs with outstanding performance have a promising prospect in the field of energy storage.

17.
ACS Appl Mater Interfaces ; 14(34): 38824-38834, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35982536

RESUMO

The energy density of lithium-ion batteries (LIBs) can be meaningfully increased by utilizing Si-on-graphite composites (Si@Gr) as anode materials, because of several advantages, including higher specific capacity and low cost. However, long cycling stability is a key challenge for commercializing these composites. In this study, to solve this issue, we have developed a multifunctional polymeric artificial solid-electrolyte interphase (A-SEI) protective layer on carbon-coated Si@Gr anode particles (making Si@Gr/C-SCS) to prolong the cycling stability in LIBs. The coating is made of sulfonated chitosan (SCS) that is crosslinked with glutaraldehyde promoting good ionic conduction together with sufficient mechanical strength of the A-SEI. The focused ion beam-scanning electron microscopy and high-resolution transmission electron microscopy images show that the SCS is uniformly coated on the composite particles with thickness in nanometer. The anodes are investigated in Li metal cells Si@Gr/C-SCS||Li metal) and lithium-ion full-cells (LiNi0.6Co0.2Mn0.2O2 (NCM-622)||Si@Gr/C-SCS) to understand the material/electrode intrinsic degradation as well as the impact of the polymer coating on active lithium losses because of the continuous SEI (re)formation. The anode composites exhibit a high capacity reaching over 600 mAh g-1, and even without electrolyte optimization, the Si@Gr/C-SCS illustrates a superior long cycle life performance of up to 1000 cycles (over 67% capacity retention). The excellent long-term cycling stability of the anodes was attributed to the SCS polymer coating acting as the A-SEI. The simple polymer coating process is highly interesting in guiding the preparation of long-cycle-life electrode materials of high-energy LIB cells.

18.
ACS Appl Mater Interfaces ; 14(1): 677-683, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939409

RESUMO

Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0.7 V (vs Na+/Na) and a small volume contraction during cycles; P2-type Ti-based layered oxides are typically reported, due to the challenging synthesis of the O3-type counterpart resulting from the high percentage of unstable Ti3+. Herein, we report an anomalous O3-Na2/3Ni1/3Ti2/3O2 layered oxide as an ultrastable and high-rate anode material for SIBs. The anode material delivers a reversible capacity of 112 mA h g-1 after 300 cycles at 0.1 C, a good capacity retention rate of 91% after 1400 cycles at 2 C, and, in particular, a capacity of 52 mA h g-1 even at a high rate of 20 C (1780 mA g-1). Furthermore, the in situ X-ray diffraction monitoring reveals no phase transitions and almost zero strain both underlie the good long-cycle stability. The measured high apparent Na+ diffusion coefficient (2.06 × 10-10 cm2 s-1) and the low migration energy barrier (0.59 eV) from density functional theory calculations are responsible for the superior rate capability. Our results promise advanced high-performance O3-type Ti-based layered oxides as promising anode materials toward application for SIBs.

19.
ACS Appl Mater Interfaces ; 13(50): 59882-59891, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894648

RESUMO

The potassium-ion battery (PIB) is the most promising alternative to a lithium-ion battery (LIB). Exploitation of a suitable electrode material is crucial to promote the development of PIBs. The MoSe2 material has attracted much attention due to its high theoretical capacity, unique layered structure, and good conductivity. However, the potassium storage property of MoSe2 has been suffering from structural fragmentation and sluggish reaction kinetic caused by large potassium ions upon insertion/extraction, which needs to be further improved. Herein, the MoSe2 nanosheets are confined into N-doped hollow porous carbon microspheres (MoSe2@N-HCS) by spray drying and high-temperature selenization. It delivers a superior rate performance of 113.7 mAh g-1 at 10 A g-1 and remains at a high capacity of 158.3 mAh g-1 at 2 A g-1 even after 16 700 cycles for PIBs. The excellent electrochemical performance can be attributed to unique structure, N-doping, and robust chemical bonds. The storage mechanism of MoSe2 for potassium ions was explored. The outstanding properties of MoSe2@N-HCS make it a promising anode material for PIBs.

20.
ACS Appl Mater Interfaces ; 12(15): 17659-17668, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32202755

RESUMO

Electrolyte solutions and electrode active materials, as core components of energy storage devices, have a great impact on the overall performance. Currently, supercapacitors suffer from the drawbacks of low energy density and poor cyclic stability in typical alkaline aqueous electrolytes. Herein, the ultrathin Co3O4 anode material is synthesized by a facile electrodeposition, followed by postheat treatment process. It is found that the decomposition of active materials induces reduction of energy density and specific capacitance during electrochemical testing. Therefore, a new strategy of preadding Co2+ cations to achieve the dissolution equilibrium of cobalt in active materials is proposed, which can improve the cyclic lifetime of electrode materials and broaden the operation window of electrochemical devices. Co2+ and Li+ embedded in carbon electrode during charging can enhance H+ desorption energy barrier, further hampering the critical step of bulk water electrolysis. More importantly, the highly reversible chemical conversion mechanism between Co3O4 and protons is demonstrated to be the fact that a large amount of quantum dots and second-order flaky CoO layers were in situ formed in the electrochemical reaction process, which is first discovered and reported in neutral solutions. The as-assembled device achieves a high operation voltage (2.2 V), excellent cycling stability (capacitance retention of 168% after 10 000 cycles) and ultrahigh energy density (99 W h kg-1 at a power density of 1100 W kg-1). The as-prepared electrolytes and highly active electrode materials will open up new opportunities for aqueous supercapacitors with high safety, high voltage, high energy density, and long-lifespan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA