Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688773

RESUMO

The purpose of this study was to determine the effect of the culture method on the resistance of Salmonella Typhimurium in low water activity foods to storage, plasma, and dry heat. Whole black peppers were used as the model food. S. Typhimurium cultured in liquid broth (tryptic soy broth) or solid agar (tryptic soy agar) and inoculated on whole black pepper was stored or treated with cold plasma or dry heat. Inactivation of S. Typhimurium cultured in liquid medium was higher in all the treatments. Liquid-cultured S. Typhimurium showed higher DPPP = O (diphenyl-1-pyrenylphosphine oxide) values compared to the solid-cultured S. Typhimurium after plasma or dry heat treatment. Furthermore, the unsaturated fatty acid and saturated fatty acid ratio (USFA/SFA) was significantly (P < 0.05) reduced from 0.41 to 0.29 when S. Typhimurium was cultured on solid agar. These results suggested that the use of food-borne pathogens cultured on solid agar is more suitable for low water activity food pasteurization studies.


Assuntos
Piper nigrum , Salmonella enterica , Salmonella typhimurium/fisiologia , Ágar , Temperatura Alta , Sorogrupo , Microbiologia de Alimentos , Água , Contagem de Colônia Microbiana , Salmonella enterica/fisiologia
2.
Foods ; 8(12)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847186

RESUMO

High intensity pulsed light emitting diode (LED) treatment is a novel approach to inactivate foodborne pathogens. The objective of this study was to evaluate the antibacterial potential of high intensity 365 (UV-A) and 395 nm (NUV-Vis) LED treatments against Escherichia coli and Salmonella enterica at high and low water activity (aw) conditions, and to understand the influence of different process parameters on their antibacterial efficacy. Bacteria at high (in phosphate buffer saline, PBS) and low aw (aw = 0.75) conditions were treated with both the LEDs with specific doses at a fixed distance from the LEDs. The 365 nm LED showed more effectiveness in reducing the dried bacteria compared to 395 nm LED. The dry E. coli showed more resistance to LED treatments compared to Salmonella. The 365 and 395 nm LED treatments with ~658 J/cm2 dose resulted in reductions of 0.79 and 1.76 log CFU/g of Salmonella, respectively, on 0.75 aw pet foods. The LED treatments increased the surface temperature, resulting in water loss in the treated samples. This study showed that the dose, duration of light exposure, bacterial strain, and aw played a major role in the antibacterial efficacy of the 365 and 395 nm LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA