Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(16): 6712-6722, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37038903

RESUMO

This study aims to demonstrate a new technology roadmap to support the ongoing paradigm shift in wastewater management from pollutant removal to resource recovery. This is achieved by developing a novel use of an iron salt (i.e., FeCl3) in an integrated anaerobic wastewater treatment and mainstream anammox process. FeCl3 was chosen to be dosed in a proposed sidestream unit rather than in a primary settler or a mainstream reactor. This causes acidification of returned activated sludge and enables stable suppression of nitrite-oxidizing bacterial activity and excess sludge reduction. A laboratory-scale system, which comprised an anaerobic baffled reactor, a continuous-flow anoxic-aerobic (A/O) reactor, and a secondary settler, was designed to treat real domestic wastewater, with the performance of the system comprehensively monitored under a steady-state condition. The experimental assessments showed that the system had good effluent quality, with total nitrogen and phosphorus concentrations of 12.6 ± 1.3 mg N/L and 0.34 ± 0.05 mg P/L, respectively. It efficiently retained phosphorus in excess sludge (0.18 ± 0.03 g P/g dry sludge), suggesting its potential for further recovery. About half of influent organic carbon was recovered in the form of bioenergy (i.e., methane). This together with low energy consumption revealed that the system could produce a net energy of about 0.11 kWh/m3-wastewater, assessed by an energy balance analysis.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Desnitrificação , Nitrogênio , Anaerobiose , Reatores Biológicos/microbiologia , Oxirredução
2.
Environ Sci Technol ; 57(11): 4522-4532, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36897644

RESUMO

Chemically enhanced primary treatment (CEPT) followed by partial nitritation and anammox (PN/A) and anaerobic digestion (AD) is a promising roadmap to achieve energy-neutral wastewater treatment. However, the acidification of wastewater caused by ferric hydrolysis in CEPT and how to achieve stable suppression of nitrite-oxidizing bacteria (NOB) in PN/A challenge this paradigm in practice. This study proposes a novel wastewater treatment scheme to overcome these challenges. Results showed that, by dosing FeCl3 at 50 mg Fe/L, the CEPT process removed 61.8% of COD and 90.1% of phosphate and reduced the alkalinity as well. Feeding by low alkalinity wastewater, stable nitrite accumulation was achieved in an aerobic reactor operated at pH 4.35 aided by a novel acid-tolerant ammonium-oxidizing bacteria (AOB), namely, Candidatus Nitrosoglobus. After polishing in a following anoxic reactor (anammox), a satisfactory effluent, containing COD at 41.9 ± 11.2 mg/L, total nitrogen at 5.1 ± 1.8 mg N/L, and phosphate at 0.3 ± 0.2 mg P/L, was achieved. Moreover, the stable performances of this integration were well maintained at an operating temperature of 12 °C, and 10 investigated micropollutants were removed from the wastewater. An energy balance assessment indicated that the integrated system could achieve energy self-sufficiency in domestic wastewater treatment.


Assuntos
Compostos de Amônio , Purificação da Água , Águas Residuárias , Nitritos , Amônia , Oxirredução , Reatores Biológicos/microbiologia , Compostos de Amônio/análise , Nitrogênio , Fosfatos , Esgotos
3.
Environ Sci Technol ; 57(51): 21503-21526, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096379

RESUMO

Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.


Assuntos
Compostos de Amônio , Nitritos , Nitritos/metabolismo , Nitratos/metabolismo , Desnitrificação , Nitrogênio/metabolismo , Amônia , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos , Bactérias/metabolismo , Oxirredução , Compostos de Amônio/metabolismo
4.
Environ Sci Technol ; 56(19): 13964-13974, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36000687

RESUMO

Directly integrating anammox into sewage treatment is attractive, but anammox bacteria (AnAOB) enrichment is complex due to vicious competition from heterotrophic bacteria (HB). A novel strategy of optimal organics management using a preanaerobic stage and subsequent limited-oxygen conditions (0.32 ± 0.15 mg-O2/L) is applied, and a hybrid autotrophic-heterotrophic denitrification process is developed to treat sewage-like wastewater with a COD/N ratio of 3.1 for 420 days. The stable process was achieved, and a high total nitrogen removal rate of 0.53 kg-N/(m3·d) was obtained compared to conventional nitrification/denitrification. The 16S rRNA high-throughput sequencing analysis suggested that the relative abundance of the nonendogenous HB (Denitratisoma and Thauera) was drastically reduced (P ≤ 0.001), whereas the endogenous denitrifying HB (Candidatus (Ca.) Competibacter) was significantly enriched in the anammox granules (9.98%, P ≤ 0.001). Moreover, Ca. Competibacter as an inner core and Nitrospira and Ca. Brocadia as an outside coating of the anammox granules indicated the cooperation of AnAOB with HB as revealed by laser-scanning confocal microscopy and qPCR. In situ tests further confirmed nitrite from two pathways (partial nitritation and endogenous partial denitritation) that favored AnAOB enrichment. Optimal organics management can mitigate the competition of HB with AnAOB by redirecting the metabolic pathways and microbial community, which is critical to directly integrating anammox into sewage treatment.


Assuntos
Esgotos , Purificação da Água , Oxidação Anaeróbia da Amônia , Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oxigênio , RNA Ribossômico 16S , Esgotos/microbiologia , Águas Residuárias/microbiologia
5.
World J Microbiol Biotechnol ; 33(8): 153, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28674924

RESUMO

Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH4+-rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.


Assuntos
Compostos de Amônio/química , Anaerobiose , Engenharia , Águas Residuárias/química , Purificação da Água/métodos , Compostos de Amônio/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação , Gases de Efeito Estufa , Nitrificação , Nitrogênio/química , Nitrogênio/metabolismo , Oxirredução , Esgotos/química , Esgotos/microbiologia , Águas Residuárias/microbiologia , Purificação da Água/economia , Purificação da Água/instrumentação
6.
Water Res ; 265: 122314, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39190951

RESUMO

The mainstream partial nitritation/anammox (PN/A) process represents a significant innovation in decarbonizing municipal wastewater treatment. However, its implementation is considerably hampered by the challenge of stable nitrite supply. In this study, a pilot-scale PN/A system receiving real sewage (20 m3) was operated at room temperature for nearly one year. Remarkable PN performance with relatively high nitrite accumulation ratio of 75.04 ± 10.05 % was obtained via in-situ free ammonia (FA) strategy. The ammonium concentration enriched in the zeolite increased significantly by 548.8 times compared to that in the aqueous phase by ion exchange. This substantial increase robustly inhibited nitrite-oxidizing bacteria (NOB), resulting in high relative abundance ratio of ammonia-oxidizing bacteria (AOB) to NOB of 37.93 ± 12.61 in the zeolite biofilm, compared to 10.22 ± 1.67 in suspended floc sludge. The significant differences in FA concentrations between zeolite biofilm and suspended floc sludge resulted in distinct spatial distribution disparities of AOB and NOB, which were central to achieving stable nitrite accumulation without complex multiple selective pressures. Consequently, compliant effluent with total nitrogen of 10.91 ± 4.23 mg N/L was achieved at 10.4-31.1 °C without external carbon source addition. The biocarriers in the anammox process played a key role in enhancing functional genes and electron flow, supporting anammox-dominated nitrogen removal. This study presents a flexible and adaptable strategy for mainstream nitrite shunting, highlighting its potential for large-scale implementation of mainstream anammox treatment.


Assuntos
Amônia , Nitritos , Oxirredução , Zeolitas , Zeolitas/química , Amônia/metabolismo , Reatores Biológicos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Bactérias/metabolismo , Biofilmes , Águas Residuárias/química
7.
J Hazard Mater ; 480: 135860, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39298955

RESUMO

Nanoplastic pollution has become one of the most pressing environmental issues, and its bioaccumulation in aquatic environment also causes a great difficulty in treatment. Therefore, this work investigated the microbial dynamics of mainstream anaerobic ammonia oxidizing (anammox) process to treat the wastewater containing typical nanoplastics, as well as the fate and regulation mechanism of polystyrene nanoparticles (PS-NPs) with different concentrations. The results showed that 0.1-0.5 mg L-1 of PS-NPs had no significant effect on the nitrogen removal efficiency (NRE). When the concentration of PS-NPs increased from 0.5 mg L-1 to 2 mg L-1, the NRE of R1 with PS-NPs decreased from 94.9 ± 2.3 % to 77.0 ± 1.6 %, while the control reactor R0 maintained a stable NRE. Notably, the relative abundance of Ca. Kuenenia decreased from 17.4 % to 14.8 %, and that of Ca. Brocadia slightly decreased from 5.9 % to 5.0 % in R1. In addition, PS-NPs induced oxidative stress in anammox consortia, leading to the significant increase in reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as cell membrane damage. PS-NPs also downregulated the content of heme c and further inhibited anammox activity. Based on the molecular docking simulation and western blotting, cold shock proteins (CSPs) could bind to PS-NPs and reduce the performance of anammox processes at low temperatures.

8.
Toxics ; 12(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39330557

RESUMO

Simultaneous partial nitrification, anammox, denitrification, and fermentation (SNADF) is a novel process achieving simultaneous advanced sludge reduction and nitrogen removal. The influence of low temperatures on the SNADF reactor was explored to facilitate the application of mainstream anammox. When temperature decreased from 32 to 16 °C, efficient nitrogen removal was achieved, with a nitrogen removal efficiency of 81.9-94.9%. Microbial community structure analysis indicated that the abundance of Candidatus Brocadia (dominant anaerobic ammonia oxidizing bacteria (AnAOB) in the system) increased from 0.03% to 0.18%. The abundances of Nitrospira and Nitrosomonas increased from 1.6% and 0.16% to 2.5% and 1.63%, respectively, resulting in an increase in the ammonia-oxidizing bacteria (AOB) to nitrite-oxidizing bacteria (NOB) abundance ratio from 0.1 to 0.64. This ensured sufficient nitrite for AnAOB, promoting nitrogen removal. In addition, Candidatus Competibacter, which plays a role in partial denitrification, was the dominant denitrification bacteria (DNB) and provided more nitrite for AnAOB, facilitating AnAOB enrichment. Based on the findings from microbial correlation network analysis, Nitrosomonas (AOB), Thauera, and Haliangium (DNB), and A4b and Saprospiraceae (fermentation bacteria), were center nodes in the networks and therefore essential for the stability of the SNADF system. Moreover, fermentation bacteria, DNB, and AOB had close connections in substrate cooperation and resistance to adverse environments; therefore, they also played important roles in maintaining stable nitrogen removal at low temperatures. This study provided new suggestions for mainstream anammox application.

9.
Water Res ; 260: 121904, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878317

RESUMO

Anaerobic ammonium oxidation (anammox), an energy-efficient deamination biotechnology, faces operational challenges in low-temperature environments. Enhancing the metabolic activity of anammox bacteria (AnAOB) is pivotal for advancing its application in mainstream municipal wastewater treatment. Inspired by the metabolic adaptability of AnAOB and based on our previous findings, this work investigated the enhancement of intracellular ATP and NADH synthesis through the exogenous supply of reduced humic acid (HAred) and H2O2 redox couple, aiming to augment AnAOB activity under low-temperature conditions. Our experimental setup involved continuous dosing of 0.0067 µmol g-1 volatile suspended solid of H2O2 and 10 mg g-1 volatile suspended solid of HAred into a mainstream anammox reactor operated at 15 °C with an influent TN content of 60 mg/L. The results showed that HAred / H2O2 couple succeeded in maintaining the effluent TN at 10.72 ± 0.91 mg l-1. The specific anammox activity, ATP and NADH synthesis levels of sludge increased by 1.34, 2.33 and 6.50 folds, respectively, over the control setup devoid of the redox couple. High-throughput sequencing analysis revealed that the relative abundance of Candidatus Kuenenia after adding HAred / H2O2 couple reached 3.65 % at the end of operation, which was 5.14 folds higher than that of the control group. Further metabolomics analysis underscored an activation in the metabolism of amino acids, nucleotides, and phospholipids, which collectively enhanced the availability of ATP and NADH for the respiratory processes. These findings may provide guidance on strategy development for improving the electron transfer efficiency of AnAOB and underscore the potential of using redox couples to promote the mainstream application of anammox technology.


Assuntos
Oxirredução , Esgotos , Esgotos/microbiologia , Reatores Biológicos , Compostos de Amônio/metabolismo , Anaerobiose , Peróxido de Hidrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , NAD/metabolismo
10.
Water Res ; 253: 121321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367384

RESUMO

Applying anaerobic ammonium oxidation (anammox) in municipal wastewater treatment plants (MWWTPs) can unlock significant energy and resource savings. However, its practical implementation encounters significant challenges, particularly due to its limited compatibility with carbon and phosphorus removal processes. This study established a pilot-scale plant featuring a modified anaerobic-anoxic-oxic (A2O) process and operated continuously for 385 days, treating municipal wastewater of 50 m3/d. For the first time, we propose a novel concept of partial denitrifying phosphorus removal coupling with anammox (PDPRA), leveraging denitrifying phosphorus-accumulating organisms (DPAOs) as NO2- suppliers for anammox. 15N stable isotope tracing revealed that the PDPRA enabled an anammox reaction rate of 6.14 ± 0.18 µmol-N/(L·h), contributing 57.4 % to total inorganic nitrogen (TIN) removal. Metagenomic sequencing and 16S rRNA amplicon sequencing unveiled the co-existence and co-prosperity of anammox bacteria and DPAOs, with Candidatus Brocadia being highly enriched in the anoxic biofilms at a relative abundance of 2.46 ± 0.52 %. Finally, the PDPRA facilitated the synergistic conversion and removal of carbon, nitrogen, and phosphorus nutrients, achieving remarkable removal efficiencies of chemical oxygen demand (COD, 83.5 ± 5.3 %), NH4+ (99.8 ± 0.7 %), TIN (77.1 ± 3.6 %), and PO43- (99.3 ± 1.6 %), even under challenging operational conditions such as low temperature of 11.7 °C. The PDPRA offers a promising solution for reconciling the mainstream anammox and the carbon and phosphorus removal, shedding fresh light on the paradigm shift of MWWTPs in the near future.


Assuntos
Desnitrificação , Águas Residuárias , Fósforo , RNA Ribossômico 16S/genética , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Nitrogênio , Carbono , Esgotos/microbiologia , Oxirredução
11.
Bioresour Technol ; 399: 130553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460559

RESUMO

Considering the challenges associated with nitrogen removal from mature landfill leachate, a novel combined continuous-flow process integrating denitrification and partial nitrification-Anammox (PN/A) was developed using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR). In this study, IBBR successfully operated for 343 days, and when influent NH4+-N concentration of mature landfill leachate reached 1258.1 mg/L, an impressive total nitrogen removal efficiency (TNRE) of 93.3 % was achieved, along with a nitrogen removal rate (NRR) of 1.13 kg N/(m3·d). The analysis of the microbial community revealed that Candidatus Kuenenia, the dominant genus responsible for anammox, accounted for 1.7 % (day 265). Additionally, Nitrosomonas, Thauera and Truepera were identified as key contributors to the efficient removal of nitrogen from mature landfill. As a novel nitrogen removal strategy, the practical application of the IBBR system offers novel perspectives on addressing mature landfill leachate.


Assuntos
Nitrificação , Poluentes Químicos da Água , Desnitrificação , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Esgotos
12.
Bioresour Technol ; 401: 130704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636879

RESUMO

In this study, a SNAD-SBBR process was implemented to achieve ammonia removal and carbon reduction of mature landfill leachate under extremely low dissolved oxygen conditions (0.051 mg/L) for a continuous operation of 266 days. The process demonstrated excellent removal performance, with ammonia nitrogen removal efficiency reaching 100 %, total nitrogen removal efficiency reaching 87.56 %, and an average removal rate of 0.180 kg/(m3·d). The recalcitrant organic compound removal efficiency reached 34.96 %. Nitrogen mass balance analysis revealed that the Anammox process contributed to approximately 98.1 % of the nitrogen removal. Candidatus Kuenenia achieved a relative abundance of 1.49 % in the inner layer of the carrier. In the SNAD-SBBR system, the extremely low DO environment created by the highly efficient partial nitrification stage enabled the coexistence of AnAOB, denitrifying bacteria, and Nitrosomonas, synergistically achieving ammonia removal and carbon reduction. Overall, the SNAD-SBBR process exhibits low-cost and high-efficiency characteristics, holding tremendous potential for landfill leachate treatment.


Assuntos
Carbono , Desnitrificação , Nitrificação , Nitrogênio , Oxigênio , Poluentes Químicos da Água , Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Amônia/metabolismo , Reatores Biológicos , Oxirredução , Biodegradação Ambiental , Purificação da Água/métodos , Bactérias/metabolismo , Anaerobiose
13.
Bioresour Technol ; 396: 130384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281548

RESUMO

The direct integration of anammox process into municipal wastewater treatment has caused widespread concern, but the lack of anammox seeds limited its real application. This study successfully cultivated anammox granules (322.0 µm) from conventional activated sludge treating municipal wastewater. Through ultra-low floc sludge retention times of 8d, nitrifiers on flocs were eliminated and partial nitrification was realized. Furthermore, highly bacteria-enriched granules were initially formed, with Nitrosomonas and Ca. Competibacter 4-fold higher than that of flocs. Specific staining results revealed the microbial interaction with Ca. Brocadia, considering that Ca. Competibacter and Nitrosomonas correspondingly identified in the inner and outer layers of granules. The percentage of Ca. Brocadia present on the granules increased substantially from 0.0 % to 3.0 %, accompanied by a nitrogen removal rate of 0.3 kg·m-3·d-1. Our findings revealed a valuable reference for the anammox bacteria in-situ enrichment under mainstream conditions, which provides theoretical guidance for anammox-based processes practical application.


Assuntos
Esgotos , Purificação da Água , Esgotos/microbiologia , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos/microbiologia , Nitritos , Nitrificação , Bactérias , Nitrogênio , Desnitrificação
14.
Environ Sci Pollut Res Int ; 31(2): 2408-2418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066278

RESUMO

Due to the slow growth rate of anammox bacteria, enriched sludge is required for the rapid start-up of anammox-based reactors. However, it is still unclear if long-term stored anammox sludge (SAS) is an effective source of inoculum to accelerate reactor start-up. This study explored the reactivation of long-term SAS and developed an efficient protocol to reduce the start-up period of an anammox reactor. Although stored for 13 months, a low level of the specific anammox activity of 28 mg N/g VSS/d was still detected. Experimental Phase 1 involved the direct application of SAS to an upflow sludge bed reactor (USB) operated for 90 d under varying conditions of hydraulic retention time and nitrogen concentrations. In Phase 2, batch runs were executed prior to the continuous operation of the USB reactor. The biomass reactivation in the continuous flow reactor was unsuccessful. However, the SAS was effectively reactivated through a combination of batch runs and continuous flow feed. Within 75 days, the anammox process achieved a stable rate of nitrogen removal of 1.3 g N/L/day and a high nitrogen removal efficiency of 84.1 ± 0.2%. Anammox bacteria (Ca. Brocadia) abundance was 37.8% after reactivation. These overall results indicate that SAS is a feasible seed sludge for faster start-up of high-rate mainstream anammox reactors.


Assuntos
Oxidação Anaeróbia da Amônia , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio/análise , Oxirredução , Anaerobiose , Desnitrificação
15.
Bioresour Technol ; 406: 131018, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908763

RESUMO

Higher nitrite accumulation, which is challenging to achieve reliably, is always sought to obtain better nitrogen removal performance in traditional partial nitritation-anammox (PN/A) process. This study developed a modified PN/A process by introducing nitrite-oxidizing bacteria and endogenous metabolism. Advanced nitrogen removal performance of 95.5 % was achieved at a low C/N ratio of 2.7 under nitrite accumulation ratio (NAR) fluctuations. Higher nitrate accumulation at lower NAR (70 âˆ¼ 40 %) resulted in superior anammox contribution (60 âˆ¼ 75 %) and nitrogen removal performance (93 âˆ¼ 98 %). This was attributed to the higher nitrogen removal efficiency of the post-anoxic endogenous partial denitrification coupling anammox process, although the PN/A process occurring first possessed a faster anammox rate of 2.0 mg NH4+-N /(g VSS⋅h). The introduction of nitrate allowed more nitrite flow to anammox, promoting a high enrichment of anammox bacteria (Ca. Brocadia, 0.3 % to 2.8 %). This study provides new insights into the practical application of the PN/A process.


Assuntos
Reatores Biológicos , Nitritos , Nitrogênio , Oxirredução , Nitritos/metabolismo , Nitrogênio/metabolismo , Anaerobiose , Nitratos/metabolismo , Bactérias/metabolismo , Desnitrificação
16.
Bioresour Technol ; 374: 128783, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36828226

RESUMO

Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.


Assuntos
Compostos de Amônio , Desnitrificação , Águas Residuárias , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Nitrificação , Esgotos , Nitrogênio
17.
Bioresour Technol ; 387: 129550, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495158

RESUMO

The feasibility of treating wastewater and excess sludge via simultaneous nitritation, anammox, denitrification and fermentation (SNADF) was investigated in three parallel sequencing batch reactors (SBRs). SBR2 and SBR3 received exogenous nitrification-denitrification sludge and thermal hydrolysis sludge, respectively. Nitrogen removal efficiencies of 92.8 ± 5.9%, 94.6 ± 4.1%, 93.4 ± 4.8% were achieved in SBR1, SBR2, and SBR3, respectively (influent ammonium: 56.0-74.0 mg N/L), with low observed sludge yield of 0.02-0.15, -0.06-0.11, -0.17-0.05 kg mixed liquor suspended solids (MLSS)/kg chemical oxygen demand (COD). Anammox bacterial abundances increased from 3.6 × 109 ± 2.8 × 108 to 8.1 × 109 ± 2.3 × 108, 1.5 × 1010 ± 1.1 × 108, and 1.4 × 1010 ± 2.9 × 108 copies/L in SBR1-SBR3, respectively. The abundances of Nitrosomonas, genes (amo, hao) for partial nitrification, and narGHI genes (nitrate â†’ nitrite) in dominant partial denitrifying bacteria (Candidatus Competibacter) were higher in SBR2 and SBR3 than that in SBR1. These results suggested that adding excess sludge promoted sludge reduction, nitrite production and anammox bacterial enrichment. The SNADF system could treat excess sludge, meanwhile, achieve advanced nitrogen removal.


Assuntos
Desnitrificação , Esgotos , Fermentação , Nitritos , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Nitrificação , Bactérias/genética
18.
Bioresour Technol ; 369: 128484, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513309

RESUMO

This study verified the feasibility of simultaneous partial nitrification, anammox, denitrification and fermentation process under intermittent aeration in a single reactor, and explored the impact of dissolved oxygen (DO) on the synergy between fermentation and nitrogen removal. An advanced nitrogen removal efficiency of 92.8 % and a low observed sludge yield of 0.0268-0.1474 kgMLSS/kgCOD were achieved. In-situ test showed that nitrate and ammonium decreased synchronously in the absence of organic matter, indicating the possibility of simultaneous partial denitrification, anammox and fermentation. Additionally, the abundance of functional genes for acetate production was 66,894 hits, while the key genes relevant to methanogenesis were only 348 hits, which suggested that fermentation might stop at the acid-producing stage and promote partial denitrification-anammox reaction, achieving simultaneous sludge reduction and advanced nitrogen removal performance. When DO increased from 0.1-0.3 to 0.4-0.6 mg/L, the nitrogen removal efficiency was increased (63.9 %→92.8 %) while sludge reduction was negatively affected.


Assuntos
Nitrificação , Esgotos , Fermentação , Desnitrificação , Águas Residuárias , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Oxigênio
19.
Water Res ; 230: 119594, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638736

RESUMO

Integrating endogenous denitrification (ED) into partial nitrification-anammox (PNA) systems by adequately utilizing organics in municipal wastewater is a promising approach to improve nitrogen removal efficiency (NRE). In this study, a novel strategy to inhibit phosphorus-accumulating organisms (PAOs) by inducing phosphorus release and exclusion was adopted intermittently, optimizing organics allocation between PAOs and glycogen-accumulating organisms (GAOs). Enhanced ED-synergized anammox was established to treat real municipal wastewater, achieving an NRE of 97.5±2.2% and effluent total inorganic nitrogen (TIN) of less than 2.0 mg/L. With low poly-phosphorus (poly-P) levels (poly-P/VSS below 0.01 (w/w)), glycogen accumulating metabolism (GAM) acquired organics exceeded that of phosphorus accumulating metabolism (PAM) and dominated endogenous metabolism. Ca. Competibacter (GAO) dominated the community following phosphorus-rich supernatant exclusion, with abundance increasing from 3.4% to 5.7%, accompanied by enhanced ED capacity (0.2 to 1.4 mg N/g VSS /h). The enriched subgroups (GB4, GB5) of Ca. Competibcater established a consistent nitrate cycle with anammox bacteria (AnAOB) through endogenous partial denitrification (EPD) at a ∆NO2--N/∆NH4+-N of 0.91±0.11, guaranteeing the maintenance of AnAOB abundance and performance. These results provide new insights into the flexibility of PNA for the energy-efficient treatment of low-strength ammonium wastewater.


Assuntos
Nitrificação , Águas Residuárias , Desnitrificação , Esgotos/microbiologia , Nitrogênio/metabolismo , Glicogênio/metabolismo , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Fósforo/metabolismo , Bactérias/metabolismo , Oxirredução
20.
Water Environ Res ; 95(6): e10878, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37177840

RESUMO

Nitrite oxidizing bacteria (NOB) is easy to accumulate in the mainstream anammox process, leading to the decrease of anammox bacterial abundance and deterioration of nitrogen removal. In this study, anammox bacteria was gradually enriched by increasing nitrite production rate under intermittent aeration despite high NOB abundance. With the DO increased from 0.4 to 0.6 mg/L, Nitrosomonas increased from 0.14% to 0.22%, providing more nitrite for anammox bacteria and promoting its enrichment (grew by 77.4%). Adding extra nitrite of 7.14 mg N/(L·h) during the aeration phase to reactor could further increase anammox bacterial abundance by 117.6%, which was higher than the control reactor (40.2%). In contrast, NOB abundance decreased from 1.4 × 1010 to 1.2 × 1010 copies/L. The results suggested that anammox bacteria had a competitive advantage for nitrite over NOB with increasing nitrite production rate. In addition, Thauera and Dechloromonas, which were responsible for reducing nitrate to nitrite, provided additional substrates for anammox bacteria. Overall, this research provides a new idea for mainstream anammox applications. PRACTITIONER POINTS: Inhibiting NOB might be no longer necessary and difficult for mainstream anammox. Anammox bacteria competed for more nitrite with NOB when nitrite production rate increased. Increasing DO from 0.4 to 0.6 mg/L facilitated anammox bacterial growth and nitrogen removal.


Assuntos
Compostos de Amônio , Nitritos , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Bactérias , Nitrogênio , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA