Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.588
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657601

RESUMO

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Metiltransferases , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco , Animais , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciação Celular , Epigênese Genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição Kruppel-Like , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Metiltransferases/metabolismo , Metiltransferases/genética , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética , Humanos
2.
Physiol Rev ; 104(2): 659-725, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589393

RESUMO

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.


Assuntos
Insuficiência Cardíaca , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fenômenos Fisiológicos Cardiovasculares , Insuficiência Cardíaca/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia
3.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35508166

RESUMO

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Células Endoteliais , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Monócitos
4.
Genes Dev ; 37(17-18): 781-800, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798016

RESUMO

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Tecido Adiposo , Obesidade , Células Estromais
5.
Immunity ; 50(6): 1467-1481.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31201093

RESUMO

Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.


Assuntos
Citocinas/metabolismo , Linfonodos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células Estromais/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Microambiente Celular , Imunofenotipagem , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais
6.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240380

RESUMO

Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.


Assuntos
Músculo Esquelético , Músculos Oculomotores , Camundongos , Animais , Músculo Esquelético/metabolismo , Músculos Oculomotores/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Células-Tronco
7.
Proc Natl Acad Sci U S A ; 121(32): e2404146121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074278

RESUMO

Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.


Assuntos
Matriz Extracelular , Mecanotransdução Celular , Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Matriz Extracelular/metabolismo , Hidrogéis/química , Regulação da Expressão Gênica , Colágeno/metabolismo , Células Cultivadas , Imunomodulação/genética
8.
Immunity ; 47(1): 80-92.e4, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28709801

RESUMO

Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.


Assuntos
Células Endoteliais/fisiologia , Linfonodos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Organogênese , Animais , Diferenciação Celular , Células Cultivadas , Coristoma , Embrião de Mamíferos , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922327

RESUMO

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase Neoplásica
10.
Artigo em Inglês | MEDLINE | ID: mdl-39102101

RESUMO

Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.

11.
Stem Cells ; 42(9): 848-859, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804841

RESUMO

Cisplatin is widely used in tumor chemotherapy, but nephrotoxicity is an unavoidable side effect of cisplatin. Several studies have demonstrated that mesenchymal stromal cells (MSCs) ameliorate cisplatin-induced kidney injury, but the underlying mechanisms are unknown. In this study, the cisplatin-induced kidney injury mouse model was established by subjecting a single intraperitoneal injection with cisplatin. One hour before cisplatin injection, the mice received human bone marrow MSCs (hBM-MSCs) with or without siRNA-transfection, recombinant human tumor necrosis factor-α-stimulated gene/protein 6 (rhTSG-6), or PBS through the tail vein. In addition, cisplatin-stimulated HK-2 cells were treated with hBM-MSCs or rhTSG-6. Human BM-MSCs treatment remarkably ameliorated cisplatin-induced acute and chronic kidney injury, as evidenced by significant reductions in serum creatinine (Scr), blood urea nitrogen, tubular injury, collagen deposition, α-smooth muscle actin accumulation, as well as inflammatory responses, and by remarkable increased anti-inflammatory factor expression and Treg cells infiltration in renal tissues. Furthermore, we found that only a few hBM-MSCs engrafted into damaged kidney and that the level of human TSG-6 in the serum of mice increased significantly following hBM-MSCs administration. Moreover, hBM-MSCs significantly increased the viability of damaged HK-2 cells and decreased the levels of inflammatory cytokines in the culture supernatant. However, the knockdown of the TSG-6 gene in hBM-MSCs significantly attenuated their beneficial effects in vivo and in vitro. On the contrary, treated with rhTSG-6 achieved similar beneficial effects of hBM-MSCs. Our results indicate that systemic administration of hBM-MSCs alleviates cisplatin-induced acute and chronic kidney injury in part by paracrine TSG-6 secretion.


Assuntos
Injúria Renal Aguda , Moléculas de Adesão Celular , Cisplatino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cisplatino/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Humanos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Camundongos , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Transplante de Células-Tronco Mesenquimais/métodos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Masculino
12.
Stem Cells ; 42(2): 91-97, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37952107

RESUMO

Aging is characterized by an alteration of several physiological processes and biological pathways that leads to an increased susceptibility to age-related diseases and death. Normally, multipotential stem/progenitor cells may contribute to tissue homeostasis, and to minimize the age-depending DNA damage. Scientific research has demonstrated that aging induces several complex changes affecting even the mesenchymal stromal/stem cells (MSCs) ability to self-renew, differentiate, and immunomodulate the human tissues, causing further alterations in the local microenvironment. Cellular senescence can thus be considered as an overall response to several damages. Accordingly, aging seems to create the proper conditions to decrease the tissue's metabolic performance, and the cell-to-cell communication, resulting in a progressive tissue destruction; on the other hand, the MSCs functions appear to be severely reduced. This concise review summarizes the main alterations affecting the MSCs during aging, and it also explains the role of inflammation as a key player in age-related syndromes. The hypothesis is to suggest a parallelism between the thermodynamic concept of "entropy" and biological aging, speculating that both can increase within irreversible systems and both lead toward an irreversible disorder; so, the question is: should we translate aging as disorder?


Assuntos
Envelhecimento , Células-Tronco Mesenquimais , Humanos , Entropia , Envelhecimento/metabolismo , Senescência Celular/genética , Dano ao DNA , Células-Tronco Mesenquimais/metabolismo
13.
Stem Cells ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39208292

RESUMO

Cytokine(s) pre-activation/licensing is an effective way to enhance the immunomodulatory potency of mesenchymal stromal cells (MSCs). Currently, IFN-γ licensing received the most attention in comparison with other cytokines. After licensing human bone marrow-derived MSCs with pro-/anti-inflammatory cytokines IFN-γ, IL-1ß, TNF-α, TGF-ß1 alone or in combination, the in-vitro immunomodulatory potency of these MSCs was studied by incubating with allogeneic T cells and macrophage-like THP-1 cells. In addition, immunomodulation-related molecules filtered by bioinformatics, complement 1 subcomponent (C1s) and interferon-induced GTP-binding protein Mx2 (MX2), were studied to verify whether to reflect the immunomodulatory potency. Herein, we reported that different cytokines cause different effects on the function of MSC. While TGF-ß1 licensing enhances the capacity of MSCs to induce T cells with an immunosuppressive phenotype, IFN-γ-licensing strengthens the inhibitory effect of MSC on T cell proliferation. Both TGF-ß1 and IFN-γ licensing can enhance the effect of MSC on reducing the expression of pro-inflammatory cytokines by M1 macrophage-like THP-1 cells. Interestingly, IFN-γ upregulates potential potency markers extracellular C1s and kynurenine (KYN) and intracellular MX2. These three molecules have the potential to reflect mesenchymal stromal cell immunomodulatory potency. In addition, we reported that there is a synergistic effect of TGF-ß1 and IFN-γ in immunomodulation.

14.
Stem Cells ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283740

RESUMO

Peripheral arterial disease (PAD) is associated with lower-extremity muscle wasting. Hallmark features of PAD-associated skeletal muscle pathology include loss of skeletal muscle mass, reduced strength and physical performance, increased inflammation, fibrosis, and adipocyte infiltration. At the molecular level, skeletal muscle ischaemia has also been associated with gene and microRNA (miRNA) dysregulation. Mesenchymal stromal cells (MSCs) have been shown to enhance muscle regeneration and improve muscle function in various skeletal muscle injuries. This study aimed to evaluate the effects of intramuscularly delivered human umbilical cord-derived MSCs (hUC-MSCs) on skeletal muscle ischaemia. Herein, we report an hUC-MSC-mediated amelioration of ischaemia-induced skeletal muscle atrophy and function via enhancement of myofibre regeneration, reduction of tissue inflammation, adipocyte accumulation, and tissue fibrosis. These changes were observed in the absence of cell-mediated enhancement of blood flow recovery as measured by Laser Doppler imaging. Furthermore, reduced tissue fibrosis in the hUC-MSC-treated group was associated with upregulation of miR-1, miR-133a, and miR-29b and downregulation of targeted pro-fibrotic genes such as Col1a1 and Fn1. Our results support the use of hUC-MSCs as a novel approach to reduce fibrosis and promote skeletal muscle regeneration after ischaemic injury in patients with PAD.

15.
Stem Cells ; 42(7): 636-649, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38597671

RESUMO

Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their clinical application remains challenging due to issues such as immunocompatibility. MSC-derived exosomes are a promising off-the-shelf therapy for promoting wound healing in a cell-free manner. However, the potential to customize the content of MSC-exosomes, and understanding how such modifications influence exosome effects on tissue regeneration remain underexplored. In this study, we used an in vitro system to compare the priming of human MSCs by 2 inflammatory inducers TNF-α and CRX-527 (a highly potent synthetic TLR4 agonist that can be used as a vaccine adjuvant or to induce anti-tumor immunity) on exosome molecular cargo, as well as on an in vivo rat ligament injury model to validate exosome potency. Different microenvironmental stimuli used to prime MSCs in vitro affected their exosomal microRNAs and mRNAs, influencing ligament healing. Exosomes derived from untreated MSCs significantly enhance the mechanical properties of healing ligaments, in contrast to those obtained from MSCs primed with inflammation-inducers, which not only fail to provide any improvement but also potentially deteriorate the mechanical properties. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration.


Assuntos
Exossomos , Ligamentos , Células-Tronco Mesenquimais , Cicatrização , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Humanos , Animais , Ratos , Cicatrização/efeitos dos fármacos , Ligamentos/metabolismo , Ligamentos/lesões , Microambiente Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Masculino
16.
Stem Cells ; 42(4): 329-345, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153856

RESUMO

Pulmonary hypertension (PH) is an intractable, severe, and progressive cardiopulmonary disease. Recent findings suggest that human umbilical cord mesenchymal stromal cells (HUCMSCs) and HUCMSC-derived exosomes (HUCMSC-Exos) possess potential therapeutic value for PH. However, whether they have beneficial effects on hypoxic pulmonary hypertension (HPH) is unclear. Exos are released into the extracellular environment by the fusion of intracellular multivesicular bodies with the cell membrane, and they play an important role in cellular communication. Exos ameliorate immune inflammation levels, alter macrophage phenotypes, regulate mitochondrial metabolic function, and inhibit pulmonary vascular remodeling, thereby improving PH. Macrophages are important sources of cytokines and other transmitters and can promote the release of cytokines, vasoactive molecules, and reactive oxygen species, all of which are associated with pulmonary vascular remodeling. Therefore, the aim of this study was to investigate whether HUCMSC-Exos could improve the lung inflammatory microenvironment and inhibit pulmonary vascular remodeling by targeting macrophages and identifying the underlying mechanisms. The results showed that HUCMSC-Exos promoted M2 macrophage polarization, decreased pro-inflammatory factors, increased IL-10 levels, and inhibited IL-33/ST2 axis expression, thereby inhibiting hypoxia-induced proliferation of pulmonary artery smooth muscle cells and ameliorating HPH.


Assuntos
Exossomos , Hipertensão Pulmonar , Células-Tronco Mesenquimais , Hipertensão Arterial Pulmonar , Humanos , Camundongos , Animais , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/metabolismo , Exossomos/metabolismo , Remodelação Vascular , Cordão Umbilical/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo
17.
Stem Cells ; 42(8): 736-751, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826008

RESUMO

Mesenchymal stromal cells (MSCs) are investigated as cellular therapeutics for inflammatory bowel diseases and associated perianal fistula, although consistent efficacy remains a concern. Determining host factors that modulate MSCs' potency including their secretion of angiogenic and wound-healing factors, immunosuppression, and anti-inflammatory properties are important determinants of their functionality. We investigated the mechanisms that regulate the secretion of angiogenic and wound-healing factors and immune suppression of human bone marrow MSCs. Secretory analysis of MSCs focusing on 18 angiogenic and wound-healing secretory molecules identified the most abundancy of vascular endothelial growth factor A (VEGF-A). MSC viability and secretion of other angiogenic factors are not dependent on VEGF-A secretion which exclude the autocrine role of VEGF-A on MSC's fitness. However, the combination of inflammatory cytokines IFNγ and TNFα reduces MSC's VEGF-A secretion. To identify the effect of intestinal microvasculature on MSCs' potency, coculture analysis was performed between human large intestine microvascular endothelial cells (HLMVECs) and human bone marrow-derived MSCs. HLMVECs do not attenuate MSCs' viability despite blocking their VEGF-A secretion. In addition, HLMVECs neither attenuate MSC's IFNγ mediated upregulation of immunosuppressive enzyme indoleamine 2,3-dioxygenase nor abrogate suppression of T-cell proliferation despite the attenuation of VEGF-A secretion. We found that HLMVECs express copious amounts of endothelial nitric oxide synthase and mechanistic analysis showed that pharmacological blocking reverses HLMVEC-mediated attenuation of MSC's VEGF-A secretion. Together these results suggest that secretion of VEGF-A and immunosuppression are separable functions of MSCs which are regulated by distinct mechanisms in the host.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Terapia de Imunossupressão , Técnicas de Cocultura , Células Cultivadas
18.
Stem Cells ; 42(4): 291-300, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38204331

RESUMO

Acute graft-versus-host disease (GVHD) is a frequent and potentially life-threatening complication following allogeneic hematopoietic cell transplantation (HCT). Mesenchymal stromal cells (MSCs), rare precursors found in all body tissues, possess immunosuppressive properties and can inhibit alloreactivity both in vitro and in vivo. Two decades ago, we introduced bone marrow-derived (BM) MSCs as a novel therapy for acute GVHD. While some patients responded to BM-MSCs, the response was not universal. Commercially available BM-MSCs are now used for acute GVHD treatment in Canada, Japan, and New Zealand. The fetus is protected from the mother's immune system by the placenta, and our research found that placenta-derived decidua stromal cells (DSCs) offer a stronger immunosuppressive effect than other sources of stromal cells. Safety studies in rabbits, rats, mice, and humans have shown negligible or no side effects from BM-MSCs or DSCs. In a phase I/II trial for severe acute GVHD, we treated 21 patients (median age, 49 years; range 1.6-72 years) with severe biopsy-proven gastrointestinal acute GVHD. The median cell dose of DSCs was 1.2 × 106 (range 0.9-2.9) cells/kg body weight, with a median of 2 (range 1-6) infusions given 1 week apart. The cell viability of DSCs was 93% (range, 69%-100%), and the median cell passage number was 4 (range, 2-4). All patients responded, with a complete response of acute GVHD in 11 patients and partial response in 10 and 1-year survival of 81%. Randomized trials are needed to prove the superiority of DSCs compared to ruxolitinib and/or other novel immunosuppressive therapies.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Coelhos , Ratos , Doença Aguda , Decídua , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunossupressores , Células Estromais , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Idoso , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
19.
Stem Cells ; 42(5): 403-415, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310524

RESUMO

Polymorphonuclear neutrophils (PMNs), the predominant immune cell type in humans, have long been known as first-line effector cells against bacterial infections mainly through phagocytosis and production of reactive oxygen species (ROS). However, recent research has unveiled novel and pivotal roles of these abundant but short-lived granulocytes in health and disease. Human mesenchymal stromal/stem cells (MSCs), renowned for their regenerative properties and modulation of T lymphocytes from effector to regulatory phenotypes, exhibit complex and context-dependent interactions with PMNs. Regardless of species or source, MSCs strongly abrogate PMN apoptosis, a critical determinant of PMN function, except if PMNs are highly stimulated. MSCs also have the capacity to fine-tune PMN activation, particularly in terms of CD11b expression and phagocytosis. Moreover, MSCs can modulate numerous other PMN functions, spanning migration, ROS production, and neutrophil extracellular trap (NET) formation/NETosis, but directionality is remarkably dependent on the underlying context: in normal nondiseased conditions, MSCs enhance PMN migration and ROS production, whereas in inflammatory conditions, MSCs reduce both these functions and NETosis. Furthermore, the state of the MSCs themselves, whether isolated from diseased or healthy donors, and the specific secreted products and molecules, can impact interactions with PMNs; while healthy MSCs prevent PMN infiltration and NETosis, MSCs isolated from patients with cancer promote these functions. This comprehensive analysis highlights the intricate interplay between PMNs and MSCs and its profound relevance in healthy and pathological conditions, shedding light on how to best strategize the use of MSCs in the expanding list of diseases with PMN involvement.


Assuntos
Células-Tronco Mesenquimais , Neutrófilos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Fagocitose
20.
Stem Cells ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230167

RESUMO

Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8-10-fold increase in research output related to all three search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the United States (US, n=1487), United Kingdom (UK, n=1094), Germany (n=355), The Netherlands (n=339), Russia (n=215), and France (n=149), while for AI-related research the US (n=853) and UK (n=258) take a strong lead, followed by Switzerland (n=69), The Netherlands (n=37), and Germany (n=19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection between AI, SysBio, and SC research over the past two decades, with substantial growth in all three fields and exponential increases in AI-related research in the past decade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA