Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295433

RESUMO

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Íntrons/genética , Neoplasias da Próstata/metabolismo , Splicing de RNA/genética , Spliceossomos/metabolismo , Transdução de Sinais , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Neoplasias de Próstata Resistentes à Castração/genética
2.
EMBO J ; 40(14): e106536, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34009673

RESUMO

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mutação/genética , Spliceossomos/genética , Sequência de Aminoácidos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Íntrons/genética
3.
Am J Hum Genet ; 109(10): 1828-1849, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36084634

RESUMO

Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.


Assuntos
Ciliopatias , Síndromes Orofaciodigitais , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Proteínas Hedgehog/metabolismo , Humanos , Íntrons/genética , Mutação/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
4.
J Cell Sci ; 135(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859816

RESUMO

Eukaryotic genomes contain a tiny subset of 'minor class' introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated Na+ and voltage-gated Ca2+ channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart. Here, we investigate whether the minor spliceosome regulates electrophysiological properties of cardiomyocytes by knocking down the essential minor spliceosome small nuclear snRNA component U6atac in neonatal rat ventricular myocytes. Loss of U6atac led to robust minor intron retention within Scn5a and Cacna1c, resulting in reduced protein levels of Nav1.5 and Cav1.2 channels. Functional consequences were studied through patch-clamp analysis, and revealed reduced Na+ and L-type Ca2+ currents after loss of U6atac. In conclusion, minor intron splicing modulates voltage-dependent ion channel expression and function in cardiomyocytes. This may be of particular relevance in situations in which minor splicing activity changes, such as in genetic diseases affecting minor spliceosome components, or in acquired diseases in which minor spliceosome components are dysregulated, such as heart failure.


Assuntos
Cálcio , Miócitos Cardíacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Íntrons/genética , Splicing de RNA/genética , Ratos , Spliceossomos/genética , Spliceossomos/metabolismo
5.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34557915

RESUMO

Minor spliceosome inhibition due to mutations in RNU4ATAC are linked to primary microcephaly. Ablation of Rnu11, which encodes a minor spliceosome snRNA, inhibits the minor spliceosome in the developing mouse pallium, causing microcephaly. There, cell cycle defects and p53-mediated apoptosis in response to DNA damage resulted in loss of radial glial cells (RGCs), underpinning microcephaly. Here, we ablated Trp53 to block cell death in Rnu11 cKO mice. We report that Trp53 ablation failed to prevent microcephaly in these double knockout (dKO) mice. We show that the transcriptome of the dKO pallium was more similar to the control compared with the Rnu11 cKO. We find aberrant minor intron splicing in minor intron-containing genes involved in cell cycle regulation, resulting in more severely impaired mitotic progression and cell cycle lengthening of RGCs in the dKO that was detected earlier than in the Rnu11 cKO. Furthermore, we discover a potential role of p53 in causing DNA damage in the developing pallium, as detection of γH2aX+ was delayed in the dKO. Thus, we postulate that microcephaly in minor spliceosome-related diseases is primarily caused by cell cycle defects.


Assuntos
Íntrons/genética , Microcefalia/genética , Splicing de RNA/genética , Proteína Supressora de Tumor p53/genética , Animais , Ciclo Celular/genética , Morte Celular/genética , Células Ependimogliais/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , RNA Nuclear Pequeno/genética , Spliceossomos/genética , Transcriptoma/genética
6.
Genet Med ; 26(4): 101059, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158857

RESUMO

PURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.


Assuntos
Processamento Alternativo , Síndromes Orofaciodigitais , Masculino , Humanos , Processamento Alternativo/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA , Íntrons , Spliceossomos/genética , Ribonucleoproteínas/genética
7.
Genet Med ; 24(2): 384-397, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906446

RESUMO

PURPOSE: We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. METHODS: We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. RESULTS: We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke's pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. CONCLUSION: Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function.


Assuntos
Hipopituitarismo , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Hipopituitarismo/genética , Masculino , Camundongos , Proteínas Nucleares/genética , Linhagem , Fenótipo , Insuficiência Ovariana Primária/genética , Prolactina/genética , Proteínas de Ligação a RNA/genética
8.
Development ; 145(17)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30093551

RESUMO

Mutation in minor spliceosome components is linked to the developmental disorder microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Here, we inactivated the minor spliceosome in the developing mouse cortex (pallium) by ablating Rnu11, which encodes the crucial minor spliceosome small nuclear RNA (snRNA) U11. Rnu11 conditional knockout mice were born with microcephaly, which was caused by the death of self-amplifying radial glial cells (RGCs), while intermediate progenitor cells and neurons were produced. RNA sequencing suggested that this cell death was mediated by upregulation of p53 (Trp53 - Mouse Genome Informatics) and DNA damage, which were both observed specifically in U11-null RGCs. Moreover, U11 loss caused elevated minor intron retention in genes regulating the cell cycle, which was consistent with fewer RGCs in S-phase and cytokinesis, alongside prolonged metaphase in RGCs. In all, we found that self-amplifying RGCs are the cell type most sensitive to loss of minor splicing. Together, these findings provide a potential explanation of how disruption of minor splicing might cause microcephaly in MOPD1.


Assuntos
Ciclo Celular/genética , Morte Celular/fisiologia , Nanismo/genética , Células Ependimogliais/metabolismo , Retardo do Crescimento Fetal/genética , Microcefalia/genética , Células-Tronco Neurais/citologia , Osteocondrodisplasias/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , Spliceossomos/genética , Animais , Sequência de Bases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Spliceossomos/metabolismo , Proteína Supressora de Tumor p53/biossíntese
9.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199764

RESUMO

Pre-mRNA splicing is an essential step in gene expression and is catalyzed by two machineries in eukaryotes: the major (U2 type) and minor (U12 type) spliceosomes. While the majority of introns in humans are U2 type, less than 0.4% are U12 type, also known as minor introns (mi-INTs), and require a specialized spliceosome composed of U11, U12, U4atac, U5, and U6atac snRNPs. The high evolutionary conservation and apparent splicing inefficiency of U12 introns have set them apart from their major counterparts and led to speculations on the purpose for their existence. However, recent studies challenged the simple concept of mi-INTs splicing inefficiency due to low abundance of their spliceosome and confirmed their regulatory role in alternative splicing, significantly impacting the expression of their host genes. Additionally, a growing list of minor spliceosome-associated diseases with tissue-specific pathologies affirmed the importance of minor splicing as a key regulatory pathway, which when deregulated could lead to tissue-specific pathologies due to specific alterations in the expression of some minor-intron-containing genes. Consequently, uncovering how mi-INTs splicing is regulated in a tissue-specific manner would allow for better understanding of disease pathogenesis and pave the way for novel therapies, which we highlight in this review.


Assuntos
Doença/genética , Íntrons/genética , Splicing de RNA/genética , Animais , Evolução Molecular , Humanos , Especificidade de Órgãos/genética , Spliceossomos/metabolismo
10.
Semin Cell Dev Biol ; 79: 103-112, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28965864

RESUMO

The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.


Assuntos
Doença/genética , Precursores de RNA/genética , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/genética , Animais , Sequência de Bases , Humanos , Mutação , RNA Mensageiro/genética
11.
RNA ; 24(3): 396-409, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29255062

RESUMO

Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.


Assuntos
Nanismo Hipofisário/genética , Modelos Moleculares , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos , Códon sem Sentido , Nanismo Hipofisário/metabolismo , Células HeLa , Humanos , Íntrons/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Prolina , RNA Nuclear Pequeno/química , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Treonina
12.
Am J Med Genet A ; 182(8): 1952-1956, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32462814

RESUMO

Pathogenic variants in components of the minor spliceosome have been associated with several human diseases. Recently, it was reported that biallelic RNPC3 variants lead to severe isolated growth hormone deficiency and pituitary hypoplasia. The RNPC3 gene codes for the U11/U12-65K protein, a component of the minor spliceosome. The minor spliceosome plays a role in the splicing of minor (U12-type) introns, which are present in ~700-800 genes in humans and represent about 0.35% of all introns. Here, we report a second family with biallelic RNPC3 variants in three siblings with a growth hormone deficiency, central congenital hypothyroidism, congenital cataract, developmental delay/intellectual deficiency and delayed puberty. These cases further confirm the association between biallelic RNPC3 variants and severe postnatal growth retardation due to growth hormone deficiency. Furthermore, these cases show that the phenotype of this minor spliceosome-related disease might be broader than previously described.


Assuntos
Hipotireoidismo Congênito/genética , Deficiências do Desenvolvimento/genética , Nanismo Hipofisário/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Catarata , Criança , Pré-Escolar , Hipotireoidismo Congênito/complicações , Hipotireoidismo Congênito/patologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Nanismo Hipofisário/complicações , Nanismo Hipofisário/diagnóstico , Nanismo Hipofisário/patologia , Feminino , Hormônio do Crescimento/deficiência , Hormônio do Crescimento/genética , Humanos , Íntrons/genética , Masculino , Fenótipo , Puberdade Tardia/complicações , Puberdade Tardia/genética , Puberdade Tardia/patologia , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/patologia , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 114(11): E2195-E2204, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242684

RESUMO

RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3 Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates.


Assuntos
Genes de Plantas , Splicing de RNA , RNA Nuclear Pequeno , Zea mays/genética , Processamento Alternativo , Sequência de Aminoácidos , Sequência Conservada , Endosperma/genética , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Íntrons , Mutação , Motivos de Nucleotídeos , Fosforilação , Matrizes de Pontuação de Posição Específica , Transporte Proteico , Isoformas de RNA , Sítios de Splice de RNA , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Zea mays/metabolismo
14.
BMC Genomics ; 20(1): 686, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470809

RESUMO

BACKGROUND: Mutations in minor spliceosome components such as U12 snRNA (cerebellar ataxia) and U4atac snRNA (microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1)) result in tissue-specific symptoms. Given that the minor spliceosome is ubiquitously expressed, we hypothesized that these restricted phenotypes might be caused by the tissue-specific regulation of the minor spliceosome targets, i.e. minor intron-containing genes (MIGs). The current model of inefficient splicing is thought to apply to the regulation of the ~ 500 MIGs identified in the U12DB. However this database was created more than 10 years ago. Therefore, we first wanted to revisit the classification of minor introns in light of the most recent reference genome. We then sought to address specificity of MIG expression, minor intron retention, and alternative splicing (AS) across mouse and human tissues. RESULTS: We employed position-weight matrices to obtain a comprehensive updated list of minor introns, consisting of 722 mouse and 770 human minor introns. These can be found in the Minor Intron DataBase (MIDB). Besides identification of 99% of the minor introns found in the U12DB, we also discovered ~ 150 new MIGs. We then analyzed the RNAseq data from eleven different mouse tissues, which revealed tissue-specific MIG expression and minor intron retention. Additionally, many minor introns were efficiently spliced compared to their flanking major introns. Finally, we identified several novel AS events across minor introns in both mouse and human, which were also tissue-dependent. Bioinformatics analysis revealed that several of the AS events could result in the production of novel tissue-specific proteins. Moreover, like the major introns, we found that these AS events were more prevalent in long minor introns, while retention was favoured in shorter introns. CONCLUSION: Here we show that minor intron splicing and AS across minor introns is a highly organised process that might be regulated in coordination with the major spliceosome in a tissue-specific manner. We have provided a framework to further study the impact of the minor spliceosome and the regulation of MIG expression. These findings may shed light on the mechanism underlying tissue-specific phenotypes in diseases associated with minor spliceosome inactivation. MIDB can be accessed at https://midb.pnb.uconn.edu .


Assuntos
Processamento Alternativo , Íntrons , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fases de Leitura Aberta/genética , Especificidade de Órgãos/genética , Especificidade de Órgãos/fisiologia , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Spliceossomos/genética
15.
J Exp Bot ; 67(11): 3397-406, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27091878

RESUMO

The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Íntrons , Splicing de RNA/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo
16.
RNA Biol ; 13(7): 670-9, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27232356

RESUMO

Although seven proteins unique to U12 intron-specific minor spliceosomes, denoted as U11/U12-65K, -59K, -48K, -35K, -31K, -25K, and -20K, have been identified in humans and the roles of some of them have been demonstrated, the functional role of most of these proteins in plants is not understood. A recent study demonstrated that Arabidopsis U11/U12-65K is essential for U12 intron splicing and normal plant development. However, the structural features and sequence motifs important for 65 K binding to U12 snRNA and other spliceosomal proteins remain unclear. Here, we demonstrated by domain-deletion analysis that the C-terminal region of the 65 K protein bound specifically to the stem-loop III of U12 snRNA, whereas the N-terminal region of the 65 K protein was responsible for interacting with the 59 K protein. Analysis of the interactions between each snRNP protein using yeast two-hybrid analysis and in planta bimolecular fluorescence complementation and luciferase complementation imaging assays demonstrated that the core interactions among the 65 K, 59 K, and 48 K proteins were conserved between plants and animals, and multiple interactions were observed among the U11/U12-snRNP proteins. Taken together, these results reveal that U11/U12-65K is an indispensible component of the minor spliceosome complex by binding to both U11/U12-59K and U12 snRNA, and that multiple interactions among the U11/U12-snRNP proteins are necessary for minor spliceosome assembly.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA de Plantas , RNA Nuclear Pequeno , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/química , Spliceossomos/genética , Spliceossomos/metabolismo
17.
Plant J ; 78(5): 799-810, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24606192

RESUMO

The U12-dependent introns have been identified in a wide range of eukaryotes and are removed from precursor-mRNAs by U12 intron-specific minor spliceosome. Although several proteins unique to minor spliceosome have been identified, the nature of their effect on U12 intron splicing as well as plant growth and development remain largely unknown. Here, we characterized the functional role of an U12-type spliceosomal protein, U11/U12-65K in Arabidopsis thaliana. The transgenic knockdown plants generated by artificial miRNA-mediated silencing strategy exhibited severe defect in growth and development, such as severely arrested primary inflorescence stems, serrated leaves, and the formation of many rosette leaves after bolting. RNA sequencing and reverse transcription polymerase chain reaction (RT-PCR) analyses revealed that splicing of 198 out of the 234 previously predicted U12 intron-containing genes and 32 previously unidentified U12 introns was impaired in u11/u12-65k mutant. Moreover, the U11/U12-65K mutation affected alternative splicing, as well as U12 intron splicing, of many introns. Microarray analysis revealed that the genes involved in cell wall biogenesis and function, plant development, and metabolic processes are differentially expressed in the mutant plants. U11/U12-65K protein bound specifically to U12 small nuclear RNA (snRNA), which is necessary for branch-point site recognition. Taken together, these results provide clear evidence that U11/U12-65K is an indispensible component of minor spliceosome and involved in U12 intron splicing and alternative splicing of many introns, which is crucial for plant development.


Assuntos
Arabidopsis/metabolismo , Íntrons/genética , Splicing de RNA/fisiologia , Spliceossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Vegetal , Splicing de RNA/genética , Spliceossomos/genética
18.
RNA Biol ; 11(11): 1430-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25692239

RESUMO

Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.


Assuntos
Regulação da Expressão Gênica , Neurônios Motores/metabolismo , Splicing de RNA , Proteínas do Complexo SMN/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Íntrons/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Interferência de RNA , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas do Complexo SMN/metabolismo , Septinas/genética , Septinas/metabolismo
19.
Horm Res Paediatr ; 97(2): 157-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37463572

RESUMO

INTRODUCTION: Pathogenic biallelic RNPC3 variants cause congenital hypopituitarism (CH) with congenital cataracts, neuropathy, developmental delay/intellectual disability, primary ovarian insufficiency, and pituitary hypoplasia. Here, we aimed to evaluate the clinical and molecular characteristics of 2 patients with CH and neuropathy. MATERIALS AND METHODS: Proband was evaluated by clinical, laboratory, and radiological exams, followed by exome sequencing (ES). Clinical investigation of an affected sibling and variant segregation in the family was performed by Sanger sequencing. A three-dimensional protein model study was conducted to predict the effect of the variant on the function of the RNPC3 peptide. RESULTS: Proband was a 16-month-old girl who was referred for the evaluation of failure to thrive. Her height, weight, and head circumference were 55.8 cm (-7.6 SDS), 6.5 kg (-3.6 SDS), and 41.8 cm (-3.82), respectively. She had a developmental delay and intellectual disability. Central hypothyroidism, growth hormone, and prolactin deficiencies were identified, and MRI revealed pituitary hypoplasia. Electroneuromyography performed for the gait abnormality revealed peripheral neuropathy. A homozygous novel variant c.484C>T/p.(Pro162Ser) in the RNPC3 was detected in the ES. Her brother had the same genotype, and he similarly had pituitary hormone deficiencies with polyneuropathy. CONCLUSION: Expanding our knowledge of the spectrum of RNPC3 variants, and apprehending clinical and molecular data of additional cases, is decisive for accurate diagnosis and genetic counseling.


Assuntos
Hipopituitarismo , Proteínas Nucleares , Doenças do Sistema Nervoso Periférico , Proteínas de Ligação a RNA , Feminino , Humanos , Lactente , Masculino , Genótipo , Hipopituitarismo/genética , Deficiência Intelectual , Proteínas Nucleares/genética , Fenótipo , Proteínas de Ligação a RNA/genética
20.
Wiley Interdiscip Rev RNA ; 14(1): e1761, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056453

RESUMO

Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.


Assuntos
Splicing de RNA , Spliceossomos , Animais , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Íntrons , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA