Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630732

RESUMO

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.


Assuntos
Reparo do DNA , Quadruplex G , DNA/efeitos da radiação , Dano ao DNA , Instabilidade Genômica , Humanos
2.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234992

RESUMO

Four sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in the [35S]GTPgS assay and in an assay for respiratory depression. In each of the four sets, similarities and differences were observed dependent on the length of their C9-alkenyl chain and, most importantly, their stereochemistry. Three MOR antagonists were found to be as or more potent than naltrexone and, unlike naltrexone, none had MOR, KOR, or DOR agonist activity. Several potent MOR full agonists were obtained, and, of particular interest partial agonists were found that exhibited less respiratory depression than that caused by morphine. The effect of stereochemistry and the length of the C9-alkenyl chain was also explored using molecular modeling. The MOR antagonists were found to interact with the inactive (4DKL) MOR crystal structures and agonists were found to interact with the active (6DDF) MOR crystal structures. The comparison of their binding modes at the mouse MOR was used to gain insight into the structural basis for their stereochemically induced pharmacological differences.


Assuntos
Naltrexona , Insuficiência Respiratória , Animais , Células CHO , Colforsina , Cricetinae , Ligantes , Camundongos , Morfina/farmacologia , Receptores Opioides/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo
3.
Arch Toxicol ; 94(4): 1349-1365, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32185416

RESUMO

Estragole, naturally occurring in a variety of herbs and spices, can form DNA adducts after bioactivation. Estragole DNA adduct formation and repair was studied in in vitro liver cell models, and a molecular dynamics simulation was used to investigate the conformation dependent (in)efficiency of N2-(trans-isoestragol-3'-yl)-2'-deoxyguanosine (E-3'-N2-dG) DNA adduct repair. HepG2, HepaRG cells, primary rat hepatocytes and CHO cells (including CHO wild-type and three NER-deficient mutants) were exposed to 50 µM estragole or 1'-hydroxyestragole and DNA adduct formation was quantified by LC-MS immediately following exposure and after a period of repair. Results obtained from CHO cell lines indicated that NER plays a role in repair of E-3'-N2-dG adducts, however, with limited efficiency since in the CHO wt cells 80% DNA adducts remained upon 24 h repair. Inefficiency of DNA repair was also found in HepaRG cells and primary rat hepatocytes. Changes in DNA structure resulting from E-3'-N2-dG adduct formation were investigated by molecular dynamics simulations. Results from molecular dynamics simulations revealed that conformational changes in double-stranded DNA by E-3'-N2-dG adduct formation are small, providing a possible explanation for the restrained repair, which may require larger distortions in the DNA structure. NER-mediated enzymatic repair of E-3'-N2-dG DNA adducts upon exposure to estragole will be limited, providing opportunities for accumulation of damage upon repeated daily exposure. The inability of this enzymatic repair is likely due to a limited distortion of the DNA double-stranded helix resulting in inefficient activation of nucleotide excision repair.


Assuntos
Anisóis/toxicidade , Carcinógenos/toxicidade , Aromatizantes/toxicidade , Derivados de Alilbenzenos , Animais , Cromatografia Líquida , Cricetinae , Cricetulus , DNA , Adutos de DNA , Reparo do DNA , Desoxiguanosina , Hepatócitos , Espectrometria de Massas , Simulação de Dinâmica Molecular , Ratos , Testes de Toxicidade
4.
Biochim Biophys Acta ; 1860(9): 1821-35, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27241846

RESUMO

BACKGROUND: Most biological processes involve water, and the interactions of biomolecules with water affect their structure, function and dynamics. SCOPE OF REVIEW: This review summarizes the current knowledge of protein and nucleic acid interactions with water, with a special focus on the biomolecular hydration layer. Recent developments in both experimental and computational methods that can be applied to the study of hydration structure and dynamics are reviewed, including software tools for the prediction and characterization of hydration layer properties. MAJOR CONCLUSIONS: In the last decade, important advances have been made in our understanding of the factors that determine how biomolecules and their aqueous environment influence each other. Both experimental and computational methods contributed to the gradually emerging consensus picture of biomolecular hydration. GENERAL SIGNIFICANCE: An improved knowledge of the structural and thermodynamic properties of the hydration layer will enable a detailed understanding of the various biological processes in which it is involved, with implications for a wide range of applications, including protein-structure prediction and structure-based drug design.


Assuntos
Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Água/metabolismo , Animais , Simulação de Dinâmica Molecular
5.
Front Mol Biosci ; 10: 1087676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936991

RESUMO

Staphylococcus epidermidis is the most common cause of medical device-associated infections and is an opportunistic biofilm former. Among hospitalized patients, S. epidermidis infections are the most prevalent, and resistant to most antibiotics. In order to overcome this resistance, it is imperative to treat the infection at a cellular level. The present study aims to identify inhibitors of the prokaryotic cell division protein FtsZ a widely conserved component of bacterial cytokinesis. Two substrate binding sites are present on the FtsZ protein; the nucleotide-binding domain and the inter-domain binding sites. Molecular modeling was used to identify potential inhibitors against the binding sites of the FtsZ protein. One hundred thirty-eight chemical entities were virtually screened for the binding sites and revealed ten molecules, each with good binding affinities (docking score range -9.549 to -4.290 kcal/mol) compared to the reference control drug, i.e., Dacomitinib (-4.450 kcal/mol) and PC190723 (-4.694 kcal/mol) at nucleotide and inter-domain binding sites respectively. These top 10 hits were further analyzed for their ADMET properties and molecular dynamics simulations. The Chloro-derivative of GTP, naphthalene-1,3-diyl bis(3,4,5-trihydroxybenzoate), Guanosine triphosphate (GTP), morpholine and methylpiperazine derivative of GTP were identified as the lead molecules for nucleotide binding site whereas for inter-domain binding site, 1-(((amino(iminio)methyl)amino)methyl)-3-(3-(tert-butyl)phenyl)-6,7-dimethoxyisoquinolin-2-ium, and Chlorogenic acidwere identified as lead molecules. Molecular dynamics simulation and post MM/GBSA analysis of the complexes revealed good protein-ligand stability predicting them as potential inhibitors of FtsZ (Figure 1). Thus, identified FtsZ inhibitors are a promising lead compounds for S. epidermidis related infections.

6.
Front Neurosci ; 17: 1110311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814794

RESUMO

One of Alzheimer's disease major hallmarks is the aggregation of ß-amyloid peptide, a process in which metal ions play an important role. In the present work, an integrative computational study has been performed to identify the metal-binding regions and determine the conformational impact of Cu(II) and Al(III) ion binding to the ß-amyloid (Aß42) fibrillary structure. Through classical and Gaussian accelerated molecular dynamics, it has been observed that the metal-free fiber shows a hinge fan-like motion of the S-shaped structure, maintaining the general conformation. Upon metal coordination, distinctive patterns are observed depending on the metal. Cu(II) binds to the flexible N-terminal region and induces structural changes that could ultimately disrupt the fibrillary structure. In contrast, Al(III) binding takes place with the residues Glu22 and Asp23, and its binding reinforces the core stability of the system. These results give clues on the molecular impact of the interaction of metal ions with the aggregates and sustain their non-innocent roles in the evolution of the illness.

7.
Front Mol Biosci ; 8: 627015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748189

RESUMO

The clathrin-associated protein adaptin-2 (AP2) is a distinctive member of the hetero-tetrameric clathrin adaptor complex family. It plays a crucial role in many intracellular vesicle transport pathways. The hydroxyapatite (HAp) nanoparticles can enter cells through clathrin-dependent endocytosis, induce apoptosis, and ultimately inhibit tumor metastasis. Exploring the micro process of the binding of AP2 and HAp is of great significance for understanding the molecular mechanism of HAp's anti-cancer ability. In this work, we used molecular modeling to study the binding of spherical, rod-shaped, and needle-shaped HAps toward AP2 protein at the atomic level and found that different nanoparticles' morphology can determine their binding specificity through electrostatic interactions. Our results show that globular HAp significantly changes AP2 protein conformation, while needle-shaped HAP has more substantial binding energy with AP2. Therefore, this work offers a microscopic picture for cargo recognition in clathrin-mediated endocytosis, clarifies the design principles and possible mechanisms of high-efficiency nano-biomaterials, and provides a basis for their potential anti-tumor therapeutic effects.

8.
J Mol Graph Model ; 92: 1-7, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31279174

RESUMO

Isolated growth hormone deficiency (IGHD) is the most common pituitary hormone deficiency and can result from congenital or acquired causes. Among the known factors, genetic mutations in human growth hormone (hGH) remain the most frequent cause of IGHD, which influence the binding of hGH to its cognate receptor (hGHbp). Although previous studies have systematically investigated the residue importance at hGH-hGHbp complex interface, the molecular role of IGHD-associated residue mutations in the complex function still remains largely unexplored. Here, a total of 21 known hGH naturally-occurring missence mutations that have been clinically observed to be involved in IGHD disorder are collected and confirmed by original literature; they effects on the conformation, energetics and dynamics of hGH-hGHbp recognition and interaction are dissected at molecular level by using atomistic dynamics simulations, binding energy calculations and fluorescence spectroscopy assays. A systematic profile of hGH-hGHbp binding response to these clinical missence mutations is created, based on which it is revealed that (i) most mutations have appreciably unfavorable effect on the binding, which potentially destabilize the complex interaction, while only very few are predicted as moderate stabilizers for the complex system, and (ii) these disease-related mutations can locate either at complex interface or in hGH protein interior far away from the interface; both can influence the complex binding through either direct interaction or indirect allostericity. Two mutations, E100K (non-interface) and G146R (interface), are identified to address potent destabilization effect on hGH-hGHbp complex system; they can reduce the complex binding affinity by 8-fold (Kd changes from 0.76 to 5.9 nM) and 46-fold (Kd changes from 0.76 to 34.7 nM), respectively.


Assuntos
Nanismo Hipofisário/genética , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Receptores da Somatotropina/química , Sequência de Aminoácidos , Sítios de Ligação , Nanismo Hipofisário/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores da Somatotropina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA