Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 2): 260-267, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252523

RESUMO

A method to optimize the thermal deformation of an indirectly cryo-cooled silicon crystal monochromator exposed to intense X-rays at a low-emittance diffraction-limited synchrotron radiation source is presented. The thermal-induced slope error of the monochromator crystal has been studied as a function of heat transfer efficiency, crystal temperature distribution and beam footprint size. A partial cooling method is proposed, which flattens the crystal surface profile within the beam footprint by modifying the cooling contact area to optimize the crystal peak temperature. The optimal temperature varies with different photon energies, which is investigated, and a proper cooling strategy is obtained to fulfil the thermal distortion requirements over the entire photon energy range. At an absorbed power up to 300 W with a maximum power density of 44.8 W mm-2 normal incidence beam from an in-vacuum undulator, the crystal thermal distortion does not exceed 0.3 µrad at 8.33 keV. This method will provide references for the monochromator design on diffraction-limited synchrotron radiation or free-electron laser light sources.

2.
J Synchrotron Radiat ; 31(Pt 3): 478-484, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592970

RESUMO

Maximizing the performance of crystal monochromators is a key aspect in the design of beamline optics for diffraction-limited synchrotron sources. Temperature and deformation of cryo-cooled crystals, illuminated by high-power beams of X-rays, can be estimated with a purely analytical model. The analysis is based on the thermal properties of cryo-cooled silicon crystals and the cooling geometry. Deformation amplitudes can be obtained, quickly and reliably. In this article the concept of threshold power conditions is introduced and defined analytically. The contribution of parameters such as liquid-nitrogen cooling efficiency, thermal contact conductance and interface contact area of the crystal with the cooling base is evaluated. The optimal crystal illumination and the base temperature are inferred, which help minimize the optics deformation. The model has been examined using finite-element analysis studies performed for several beamlines of the Diamond-II upgrade.

3.
J Synchrotron Radiat ; 30(Pt 5): 895-901, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594863

RESUMO

Details of the design and operational status of the silicon-nitride-based entrance slit installed in the Taiwan Photon Source (TPS) 45A beamline are given. The slit is a diamond blade edge etched onto a copper slit part, which is in thermal contact with the silicon nitride base. A stable slit opening smaller than 4 µm is achieved in TPS 45A. The beam size at the slit has a full width at half-maximum of 3 µm in the vertical direction with a power of 20 W. Additionally, a hard stop made of invar is incorporated to control the thermal expansion displacement. The slit reduces the size and increases the stability of the source of the monochromator. Consequently, a higher energy resolution and excellent beamline stability are achieved.

4.
J Synchrotron Radiat ; 30(Pt 2): 308-318, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891844

RESUMO

Double-crystal monochromators (DCMs) are one of the most critical optical devices in beamlines at synchrotron sources, directly affecting the quality of the beam energy and position. As the performance of synchrotron light sources continues to improve, higher demands are placed on the stability of DCMs. This paper proposes a novel adaptive vibration control method combining variational modal decomposition (VMD) and filter-x normalized least mean squares (FxNLMS), ensuring DCM stability under random engineering disturbance. Firstly, the sample entropy of the vibration signal is selected as the fitness function, and the number of modal components k and the penalty factor α are optimized by a genetic algorithm. Subsequently, the vibration signal is decomposed into band frequencies that do not overlap with each other. Eventually, each band signal is individually governed by the FxNLMS controller. Numerical results have demonstrated that the proposed adaptive vibration control method has high convergence accuracy and excellent vibration suppression performance. Furthermore, the effectiveness of the vibration control method has been verified with actual measured vibration signals of the DCM.

5.
J Synchrotron Radiat ; 30(Pt 4): 686-694, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318369

RESUMO

The wavefront preservation of coherent X-ray free-electron laser beams is pushing the requirement on the quality and performance of X-ray optics to an unprecedented level. The Strehl ratio can be used to quantify this requirement. In this paper, the criteria for thermal deformation of the X-ray optics are formulated, especially for crystal monochromators. To preserve the X-ray wavefront, the standard deviation of the height error should be sub-nm for mirrors and less than 25 pm for crystal monochromators. Cryocooled silicon crystals combined with two techniques can be used to achieve this level of performance for monochromator crystals: (1) using a focusing element to compensate the second-order component of the thermal deformation; (2) introducing a cooling pad between the cooling block and silicon crystal and optimizing the effective cooling temperature. Each of these techniques allows the thermal deformation in standard deviation of the height error to be reduced by an order of magnitude. As an example, for the LCLS-II-HE Dynamic X-ray Scattering instrument, the criteria on thermal deformation of a high-heat-load monochromator crystal can be achieved for a 100 W SASE FEL beam. Wavefront propagation simulations confirm that the reflected beam intensity profile is satisfactory on both the peak power density and focused beam size.


Assuntos
Silício , Radiografia , Temperatura
6.
J Synchrotron Radiat ; 30(Pt 1): 90-110, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601930

RESUMO

The High-Dynamic Double-Crystal Monochromator (HD-DCM) is a mechatronic system with unique control-based architecture and deep paradigm changes as compared with traditional beamline monochromators. Aiming at unprecedented inter-crystal positioning stability in vertical-bounce double-crystal monochromators (DCMs) of the order of 10 nrad RMS (1 Hz to 2.5 kHz), and not only in fixed-energy but also in fly-scan operation, it has been developed according to a `first-time right' predictive design approach for hard X-ray beamlines at Sirius, the fourth-generation light source at the Brazilian Synchrotron Light Laboratory (LNLS/CNPEM). This work explores some of the challenges that emerge with this new technology and presents the latest commissioning results that demonstrate the unparallel performances of the HD-DCM at the undulator-based EMA (Extreme Methods of Analysis) beamline at Sirius. With the enabled fast spectroscopy fly-scan possibilities, a new energy-tuning evaluation method, based on wave-propagation simulations, becomes part of a motion-oriented analysis that is carried out to derive the multi-axis non-linear positioning problem, covering not only energy selection and fixed exit in the HD-DCM but also the emission spectrum of an adjustable-phase undulator (APU). The HD-DCM control scheme and its flexible operation modes are described in detail as well. Furthermore, a new integration topology between the HD-DCM and EMA's APU, coming already close to ultimate motion levels, is described and validated.

7.
J Synchrotron Radiat ; 29(Pt 5): 1299-1308, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073890

RESUMO

The SASE3 soft X-ray beamline at the European XFEL has been designed and built to provide experiments with a pink or monochromatic beam in the photon energy range 250-3000 eV. Here, the focus is monochromatic operation of the SASE3 beamline, and the design and performance of the SASE3 grating monochromator are reported. The unique capability of a free-electron laser source to produce short femtosecond pulses of a high degree of coherence challenges the monochromator design by demanding control of both photon energy and temporal resolution. The aim to transport close to transform-limited pulses poses very high demands on the optics quality, in particular on the grating. The current realization of the SASE3 monochromator is discussed in comparison with optimal design performance. At present, the monochromator operates with two gratings: the low-resolution grating is optimized for time-resolved experiments and allows for moderate resolving power of about 2000-5000 along with pulse stretching of a few to a few tens of femtoseconds RMS, and the high-resolution grating reaches a resolving power of 10 000 at the cost of larger pulse stretching.


Assuntos
Fótons , Síncrotrons , Lasers , Radiografia , Raios X
8.
J Synchrotron Radiat ; 29(Pt 4): 1095-1106, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787577

RESUMO

The Inner Shell Spectroscopy (ISS) beamline on the 8-ID station at the National Synchrotron Light Source II (NSLS-II), Upton, NY, USA, is a high-throughput X-ray absorption spectroscopy beamline designed for in situ, operando, and time-resolved material characterization using high monochromatic flux and scanning speed. This contribution discusses the technical specifications of the beamline in terms of optics, heat load management, monochromator motion control, and data acquisition and processing. Results of the beamline tests demonstrating the quality of the data obtainable on the instrument, possible energy scanning speeds, as well as long-term beamline stability are shown. The ability to directly control the monochromator trajectory to define the acquisition time for each spectral region is highlighted. Examples of studies performed on the beamline are presented. The paper is concluded with a brief outlook for future developments.

9.
J Synchrotron Radiat ; 29(Pt 2): 377-385, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254300

RESUMO

Crystal monochromators are often the primary optics in hard X-ray synchrotron beamlines. Management of power load is central to their design. Strict requirements on stability and deformation are to be met, as new-generation synchrotron sources deliver brighter beams of X-rays. This article sets out to illustrate an overall picture of the deformation caused by heat load in a cryo-cooled Si crystal monochromator using first principles. A theoretical model has been developed to predict the temperature distribution and surface deformation by applying intrinsic properties of Si material and the cooling system parameters. The model explains the universal behaviour of crystal slope error versus absorbed power; it has been benchmarked against experimental data and used to interpret finite-element analysis of cryogenically cooled crystals.

10.
J Synchrotron Radiat ; 29(Pt 1): 138-147, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985431

RESUMO

Full-field transmission X-ray microscopy (TXM) is a very potent high-resolution X-ray imaging technique. However, it is challenging to achieve fast acquisitions because of the limited efficiency of the optics. Using a broader energy bandwidth, for example using a multilayer monochromator, directly increases the flux in the experiment. The advantage of more counts needs to be weighed against a deterioration in achievable resolution because focusing optics show chromatic aberrations. This study presents theoretical considerations of how much the resolution is affected by an increase in bandwidth as well as measurements at different energy bandwidths (ΔE/E = 0.013%, 0.27%, 0.63%) and the impact on achievable resolution. It is shown that using a multilayer monochromator instead of a classical silicon double-crystal monochromator can increase the flux by an order of magnitude with only a limited effect on the resolution.

11.
J Synchrotron Radiat ; 29(Pt 2): 369-376, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254299

RESUMO

A way has been developed to measure the unit-cell parameters of a single crystal just from an energy scan with X-rays, even when the exact energy of the X-rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches da/a ∼ 1 × 10-5. The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so-called `glitch effect'). This method can be easily applied to any transmissive X-ray optical element made of single crystals (for example, X-ray lenses). The only requirements are the possibility to change the energy of the generated X-ray beam and some intensity monitor to measure the transmitted intensity. The method is agnostic to the error in the monochromator tuning and it can even be used for determination of the absolute pitch (or 2θ) angle of the monochromator. Applying the same method to a crystal with well known lattice parameters allows determination of the exact cell parameters of the monochromator at any energy.

12.
J Synchrotron Radiat ; 29(Pt 5): 1265-1272, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073886

RESUMO

In this study, double-multilayer monochromators that generate intense, high-energy, pink X-ray beams are designed, installed and evaluated at the SPring-8 medium-length (215 m) bending-magnet beamline BL20B2 for imaging applications. Two pairs of W/B4C multilayer mirrors are designed to utilize photon energies of 110 keV and 40 keV with bandwidths of 0.8% and 4.8%, respectively, which are more than 100 times larger when compared with the Si double-crystal monochromator (DCM) with a bandwidth of less than 0.01%. At an experimental hutch located 210 m away from the source, a large and uniform beam of size 14 mm (V) × 300 mm (H) [21 mm (V) × 300 mm (H)] was generated with a high flux density of 1.6 × 109 photons s-1 mm-2 (6.9 × 1010 photons s-1 mm-2) at 110 keV (40 keV), which marked a 300 (190) times increase in the photon flux when compared with a DCM with Si 511 (111) diffraction. The intense pink beams facilitate advanced X-ray imaging for large-sized objects such as fossils, rocks, organs and electronic devices with high speed and high spatial resolution.


Assuntos
Fótons , Síncrotrons , Raios X
13.
J Synchrotron Radiat ; 29(Pt 4): 1107-1113, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787578

RESUMO

XAFS/XRF is a general-purpose absorption spectroscopy beamline at the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Jordan. Herein, its optical layout is presented along with its powerful capabilities in collecting absorption and fluorescence spectra within a wide energy range (4.7-30 keV). The beamline is equipped with a conventional fixed-exit double-crystal monochromator that allows the collection of an X-ray absorption spectrum within a few minutes in step-by-step mode. An on-the-fly scanning mode will be implemented shortly where the acquisition time will be reduced to less than a minute per scan. The full automation of the beamline allows performing successive measurements under different conditions. The different experimental setups and special features available to users are reported. Examples of XRF and XAFS measurements are presented, showing the performance of the beamline under different standard conditions.


Assuntos
Eletrônica , Síncrotrons , Oriente Médio , Raios X
14.
Microsc Microanal ; : 1-13, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164889

RESUMO

Low-voltage scanning electron microscopes (LV-SEMs) are widely used in nanoscience. However, image resolution for SEMs is restricted by chromatic aberration due to energy spread of the electron beam at low acceleration voltage. This study introduces a new monochromator (MC) with offset cylindrical lenses (CLs) as one solution for LV-SEMs. The MC optics, with highly excited CLs in offset layouts, has advantageous high performance and simple experimental setup, making it suitable for field emission LV-SEMs. In a preliminary evaluation, our MC reduced the energy spread from 770 to 67 meV. The MC was integrated into a commercial SEM equipped with an out-lens (a conventional objective lens without immersion magnetic or retarding electric fields) and an Everhart­Thornley detector. Comparing SEM images under two conditions with the MC turned on or off, the spatial resolution was improved by 58% at 0.5 and 1 keV. The filtering effect of the MC decreased the probe current with a ratio (i.e., transmittance) of 5.7%, which was consistent with estimations based on measured energy spreads. To the best of our knowledge, this is the first report on an effective MC with higher-energy resolution than 100 meV and the results offer encouraging prospects for LV-SEM technology.

15.
Metrologia ; 59(2)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36578474

RESUMO

Improvements in a lamp-monochromator-based facility at the National Institute of Standards and Technology (NIST), the Visible near-infrared Spectral Comparator Facility (VisSCF) which is used to calibrate optical detectors for spectral radiant power responsivity from 300 nm to 1100 nm, are described. These changes include extending the VisSCF operational range down to 300 nm from 350 nm, thereby fully covering the ultraviolet-A (UVA) spectral region and partially covering the UVB range. These improvements have lowered the magnitudes of most of the components in the uncertainty budget and have led to combined 0.005 % transfer (k=1) uncertainties in the spectral power responsivity calibrations over most of the spectral range. Redevelopment of the uncertainty budget results in total expanded uncertainties of spectral responsivities of less than 0.1 % (k=2) over the spectral range from 380 nm to 980 nm, with the greatest uncertainty term coming from the calibrations of the transfer standards.

16.
J Synchrotron Radiat ; 28(Pt 1): 64-70, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399553

RESUMO

Protein dynamics contribute to protein function on different time scales. Ultrafast X-ray diffraction snapshots can visualize the location and amplitude of atom displacements after perturbation. Since amplitudes of ultrafast motions are small, high-quality X-ray diffraction data is necessary for detection. Diffraction from bovine trypsin crystals using single femtosecond X-ray pulses was recorded at FemtoMAX, which is a versatile beamline of the MAX IV synchrotron. The time-over-threshold detection made it possible that single photons are distinguishable even under short-pulse low-repetition-rate conditions. The diffraction data quality from FemtoMAX beamline enables atomic resolution investigation of protein structures. This evaluation is based on the shape of the Wilson plot, cumulative intensity distribution compared with theoretical distribution, I/σ, Rmerge/Rmeas and CC1/2 statistics versus resolution. The FemtoMAX beamline provides an interesting alternative to X-ray free-electron lasers when studying reversible processes in protein crystals.


Assuntos
Cristalografia por Raios X , Tripsina/química , Animais , Bovinos , Substâncias Macromoleculares/química , Fótons , Síncrotrons
17.
J Synchrotron Radiat ; 28(Pt 5): 1423-1436, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475290

RESUMO

Finite-element analysis is used to study the thermal deformation of a multilayer mirror due to the heat load from the undulator beam at a low-emittance synchrotron source, specifically the ESRF-EBS upgrade beamline EBSL-2. The energy bandwidth of the double-multilayer monochromator is larger than that of the relevant undulator harmonic, such that a considerable portion of the heat load is reflected. Consequently, the absorbed power is non-uniformly distributed on the surface. The geometry of the multilayer substrate is optimized to minimize thermally induced slope errors. We distinguish between thermal bending with constant curvature that leads to astigmatic focusing or defocusing and residual slope errors. For the EBSL-2 system with grazing angles θ between 0.2 and 0.4°, meridional and sagittal focal lengths down to 100 m and 2000 m, respectively, are found. Whereas the thermal bending can be tuned by varying the depth of the `smart cut', it is found that the geometry has little effect on the residual slope errors. In both planes they are 0.1-0.25 µrad. In the sagittal direction, however, the effect on the beam is drastically reduced by the `foregiveness factor', sin(θ). Optimization without considering the reflected heat load yields an incorrect depth of the `smart cut'. The resulting meridional curvature in turn leads to parasitic focal lengths of the order of 100 m.

18.
J Synchrotron Radiat ; 28(Pt 5): 1620-1630, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475309

RESUMO

FinEstBeAMS (Finnish-Estonian Beamline for Atmospheric and Materials Sciences) is a multidisciplinary beamline constructed at the 1.5 GeV storage ring of the MAX IV synchrotron facility in Lund, Sweden. The beamline covers an extremely wide photon energy range, 4.5-1300 eV, by utilizing a single elliptically polarizing undulator as a radiation source and a single grazing-incidence plane grating monochromator to disperse the radiation. At photon energies below 70 eV the beamline operation relies on the use of optical and thin-film filters to remove higher-order components from the monochromated radiation. This paper discusses the performance of the beamline, examining such characteristics as the quality of the gratings, photon energy calibration, photon energy resolution, available photon flux, polarization quality and focal spot size.

19.
J Synchrotron Radiat ; 28(Pt 2): 618-623, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650574

RESUMO

Soft X-rays excite the inner shells of materials more efficiently than any other form of light. The investigation of synchrotron radiation (SR) processes using inner-shell excitation requires the beamline to supply a single-color and high-photon-flux light in the soft X-ray region. A new integrated computing multi-layered-mirror (MLM) monochromator was installed at beamline 07A (BL07A) of NewSUBARU, which has a 3 m undulator as a light source for irradiation experiments with high-photon-flux monochromatic light. The MLM monochromator has a high reflectivity index in the soft X-ray region; it eliminates unnecessary harmonic light from the undulator and lowers the temperature of the irradiated sample surfaces. The monochromator can be operated in a high vacuum, and three different mirror pairs are available for different experimental energy ranges; they can be exchanged without exposing the monochromator to the atmosphere. Measurements of the photon current of a photodiode on the sample stage indicated that the photon flux of the monochromatic beam was more than 1014 photons s-1 cm-2 in the energy range 80-400 eV and 1013 photons s-1 cm-2 in the energy range 400-800 eV. Thus, BL07A is capable of performing SR-stimulated process experiments.

20.
J Synchrotron Radiat ; 28(Pt 3): 961-969, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950004

RESUMO

A new diffraction beamline for materials science has been built at the Canadian Light Source synchrotron. The X-ray source is an in-vacuum wiggler with a 2.5 T peak magnetic field at 5.2 mm gap. The optical configuration includes a toroidal mirror, a single side-bounce Bragg monochromator, and a cylindrical mirror, producing a sub-150 µm vertical × 500 µm horizontal focused beam with a photon energy range of 7-22 keV and a flux of 1012 photons per second at the sample position. Three endstations are currently open to general users, and the techniques available include high-resolution powder diffraction, small molecule crystallography, X-ray reflectivity, in situ rapid thermal annealing, and SAXS/WAXS. The beamline design parameters, calculated and measured performance, and initial experimental results are presented to demonstrate the capabilities for materials science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA