Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(7): 1481-1493, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29245010

RESUMO

The "holobiont" concept, defined as the collective contribution of the eukaryotic and prokaryotic counterparts to the multicellular organism, introduces a complex definition of individuality enabling a new comprehensive view of human evolution and personalized characteristics. Here, we provide snapshots of the evolving microbial-host associations and relations during distinct milestones across the lifespan of a human being. We discuss the current knowledge of biological symbiosis between the microbiome and its host and portray the challenges in understanding these interactions and their potential effects on human physiology, including microbiome-nervous system inter-relationship and its relevance to human variation and individuality.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Envelhecimento , Animais , Bactérias/classificação , Bactérias/metabolismo , Evolução Biológica , Humanos , Recém-Nascido , Especificidade de Órgãos , Puberdade , Simbiose
2.
Trends Genet ; 38(9): 944-955, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637073

RESUMO

Frontotemporal dementia (FTD) is a primary cause of dementia encompassing a broad range of clinical phenotypes and cellular pathologies. Genetic discoveries in FTD have largely been driven by linkage studies in well-documented extended families, explaining most of the patients with a known pathogenic mutation. In the context of complex diseases, it is hypothesized that mutations with reduced penetrance or a combination of low-effect size variants with environmental factors drive disease. Furthermore, these genes are likely to be part of the interaction networks of known FTD genes, contributing to converging cellular processes. In this review, we examine gene discovery approaches in FTD and introduce network biology concepts as tools to assist gene identification studies in genetically complex disease.


Assuntos
Demência Frontotemporal , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Ligação Genética , Humanos , Mutação , Fenótipo
3.
Brain ; 147(4): 1166-1189, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284949

RESUMO

Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.


Assuntos
Peptídeos , Expansão das Repetições de Trinucleotídeos , Animais , Peptídeos/genética , Modelos Animais de Doenças , Transgenes
4.
Cell Mol Life Sci ; 81(1): 14, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191696

RESUMO

Sigma-1 receptor (S1R) is a calcium-sensitive, ligand-operated receptor chaperone present on the endoplasmic reticulum (ER) membrane. S1R plays an important role in ER-mitochondrial inter-organelle calcium signaling and cell survival. S1R and its agonists confer resilience against various neurodegenerative diseases; however, the molecular mechanism of S1R is not yet fully understood. At resting state, S1R is either in a monomeric or oligomeric state but the ratio of these concentrations seems to change upon activation of S1R. S1R is activated by either cellular stress, such as ER-calcium depletion, or ligands. While the effect of ligands on S1R quaternary structure remains unclear, the effect of cellular stress has not been studied. In this study we utilize cellular and an in-vivo model to study changes in quaternary structure of S1R upon activation. We incubated cells with cellular stressors (H2O2 and thapsigargin) or exogenous ligands, then quantified monomeric and oligomeric forms. We observed that benzomorphan-based S1R agonists induce monomerization of S1R and decrease oligomerization, which was confirmed in the liver tissue of mice injected with (+)-Pentazocine. Antagonists block this effect but do not induce any changes when used alone. Oxidative stress (H2O2) increases the monomeric/oligomeric S1R ratio whereas ER calcium depletion (thapsigargin) has no effect. We also analyzed the oligomerization ability of various truncated S1R fragments and identified the fragments favorizing oligomerization. In this publication we demonstrate that quaternary structural changes differ according to the mechanism of S1R activation. Therefore, we offer a novel perspective on S1R activation as a nuanced phenomenon dependent on the type of stimulus.


Assuntos
Benzomorfanos , Cálcio , Animais , Camundongos , Peróxido de Hidrogênio , Receptor Sigma-1 , Tapsigargina , Sinalização do Cálcio
5.
Bioessays ; 45(2): e2200130, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36517085

RESUMO

Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.


Assuntos
Doenças Cerebelares , Splicing de RNA , RNA de Transferência , Criança , Humanos , Doenças Cerebelares/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , RNA de Transferência/genética , RNA de Transferência/metabolismo
6.
Med Res Rev ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715347

RESUMO

Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.

7.
Neurobiol Dis ; 192: 106426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331353

RESUMO

The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.


Assuntos
Sistema Glinfático , Doenças Neurodegenerativas , Humanos , Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Aquaporina 4 , Inflamação/metabolismo
8.
Curr Issues Mol Biol ; 46(8): 8726-8740, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194732

RESUMO

This study aimed to evaluate the efficacy of the ethanolic extract of Anadenanthera colubrina in modulating the immune response in the Experimental Autoimmune Encephalomyelitis (EAE) model. The ethanolic extract of the dried bark was analyzed by ESI (+) Orbitrap-MS to obtain a metabolite profile, demonstrating a wide variety of polyphenols, such as flavonoids and phenolic acids. Various parameters were evaluated, such as clinical signs, cytokines, cellular profile, and histopathology in the central nervous system (CNS). The ethanolic extract of A. colubrina demonstrated significant positive effects attenuating the clinical signs and pathological processes associated with EAE. The beneficial effects of the extract treatment were evidenced by reduced levels of pro-inflammatory cytokines, such as IL1ß, IL-6, IL-12, TNF, IFN-γ, and a notable decrease in several cell profiles, including CD8+, CD4+, CD4+IFN-γ, CD4+IL-17+, CD11c+MHC-II+, CD11+CD80+, and CD11+CD86+ in the CNS. In addition, histological analysis revealed fewer inflammatory infiltrates and demyelination sites in the spinal cord of mice treated with the extract compared to the control model group. These results showed, for the first time, that the ethanolic extract of A. colubrina exerts a modulatory effect on inflammatory processes, improving clinical signs in EAE, in the acute phase of the disease, which could be further explored as a possible therapeutic alternative.

9.
Curr Issues Mol Biol ; 46(5): 3946-3974, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785512

RESUMO

Gut microbiome-targeted interventions such as fecal transplant, prebiotics, probiotics, synbiotics, and antibiotic gut depletion are speculated to be of potential use in delaying the onset and progression of Parkinson's disease by rebalancing the gut microbiome in the context of the gut-brain axis. Our study aims to organize recent findings regarding these interventions in Parkinson's disease animal models to identify how they affect neuroinflammation and motor outcomes. A systematic literature search was applied in PubMed, Web of Science, Embase, and SCOPUS for gut microbiome-targeted non-dietary interventions. Studies that investigated gut-targeted interventions by using in vivo murine PD models to follow dopaminergic cell loss, motor tests, and neuroinflammatory markers as outcomes were considered to be eligible. A total of 1335 studies were identified in the databases, out of which 29 were found to be eligible. A narrative systematization of the resulting data was performed, and the effect direction for the outcomes was represented. Quality assessment using the SYRCLE risk of bias tool was also performed. Out of the 29 eligible studies, we found that a significant majority report that the intervention reduced the dopaminergic cell loss (82.76%, 95% CI [64.23%, 94.15%]) produced by the induction of the disease model. Also, most studies reported a reduction in microglial (87.5%, 95% CI [61.65%, 98.45%]) and astrocytic activation (84,62%, 95% CI [54.55%, 98.08%]) caused by the induction of the disease model. These results were also mirrored in the majority (96.4% 95% CI [81.65%, 99.91%]) of the studies reporting an increase in performance in behavioral motor tests. A significant limitation of the study was that insufficient information was found in the studies to assess specific causes of the risk of bias. These results show that non-dietary gut microbiome-targeted interventions can improve neuroinflammatory and motor outcomes in acute Parkinson's disease animal models. Further studies are needed to clarify if these benefits transfer to the long-term pathogenesis of the disease, which is not yet fully understood. The study had no funding source, and the protocol was registered in the PROSPERO database with the ID number CRD42023461495.

10.
J Neurosci Res ; 102(1): e25261, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284858

RESUMO

Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Membrana Celular , Transporte Biológico , Proteínas Associadas aos Microtúbulos
11.
Chembiochem ; 25(11): e202400152, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38695673

RESUMO

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.


Assuntos
Proteína Huntingtina , Tomografia por Emissão de Pósitrons , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/química , Ligantes , Humanos , Agregados Proteicos/efeitos dos fármacos , Mutação , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Doença de Huntington/genética , Compostos Radiofarmacêuticos/química
12.
J Transl Med ; 22(1): 238, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438847

RESUMO

Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.


Assuntos
Doenças Mitocondriais , Células-Tronco Neurais , Doenças Neurodegenerativas , Adulto , Humanos , Mitocôndrias , DNA Mitocondrial/genética , Fosforilação Oxidativa , Hipóxia
13.
Dev Growth Differ ; 66(1): 35-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855730

RESUMO

Neurons born during the fetal period have extreme longevity and survive until the death of the individual because the human brain has highly limited tissue regeneration. The brain is comprised of an enormous variety of neurons each exhibiting different morphological and physiological characteristics and recent studies have further reported variations in their genome including chromosomal abnormalities, copy number variations, and single nucleotide mutations. During the early stages of brain development, the increasing number of neurons generated at high speeds has been proposed to lead to chromosomal instability. Additionally, mutations in the neuronal genome can occur in the mature brain. This observed genomic mosaicism in the brain can be produced by multiple endogenous and environmental factors and careful analyses of these observed variations in the neuronal genome remain central for our understanding of the genetic basis of neurological disorders.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Humanos , Variações do Número de Cópias de DNA/genética , Mutação , Genômica , Neurônios
14.
Cell Mol Neurobiol ; 44(1): 28, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461204

RESUMO

Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , RNA Longo não Codificante , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/genética , Ácido Aspártico Endopeptidases , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagia/genética
15.
Neurochem Res ; 49(2): 306-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37940760

RESUMO

Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fenóis/farmacologia , Fenóis/uso terapêutico , Polifenóis/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Inflamação/tratamento farmacológico
16.
Neurochem Res ; 49(4): 834-846, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227113

RESUMO

"Neurodegenerative disorder" is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.


Assuntos
Interleucina-6 , Doenças Neurodegenerativas , Humanos , Interleucina-6/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Transdução de Sinais
17.
Neurochem Res ; 49(8): 1926-1944, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822985

RESUMO

Neurodegeneration, the decline of nerve cells in the brain, is a common feature of neurodegenerative disorders (NDDs). Oxidative stress, a key factor in NDDs such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease can lead to neuronal cell death, mitochondria impairment, excitotoxicity, and Ca2+ stress. Environmental factors compromising stress response lead to cell damage, necessitating novel therapeutics for preventing or treating brain disorders in older individuals and an aging population. Synthetic medications offer symptomatic benefits but can have adverse effects. This research explores the potential of flavonoids derived from plants in treating NDDs. Flavonoids compounds, have been studied for their potential to enter the brain and treat NDDs. These compounds have diverse biological effects and are currently being explored for their potential in the treatment of central nervous system disorders. Flavonoids have various beneficial effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic, and antioxidant properties. Their potential to alleviate symptoms of NDDs is significant.


Assuntos
Flavonoides , Doenças Neurodegenerativas , Flavonoides/uso terapêutico , Flavonoides/farmacologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia
18.
Pharmacol Res ; 205: 107247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834164

RESUMO

About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.


Assuntos
Epigênese Genética , Doenças Neurodegenerativas , Farmacogenética , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Farmacogenética/métodos , Epigênese Genética/efeitos dos fármacos , Animais , Epigenômica/métodos
19.
Biogerontology ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177917

RESUMO

The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.

20.
Eur J Neurol ; 31(8): e16320, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38686979

RESUMO

BACKGROUND AND PURPOSE: Primary lateral sclerosis (PLS) is a neurodegenerative disorder that primarily affects the central motor system. In rare cases, clinical features of PLS may overlap with those of progressive supranuclear palsy (PSP). We investigate neuroimaging features that can help distinguish PLS with overlapping features of PSP (PLS-PSP) from PSP. METHODS: Six patients with PLS-PSP were enrolled between 2019 and 2023. We compared their clinical and neuroimaging characteristics with 18 PSP-Richardson syndrome (PSP-RS) patients and 20 healthy controls. Magnetic resonance imaging, 18F-flortaucipir positron emission tomography (PET), quantitative susceptibility mapping, and diffusion tensor imaging tractography (DTI) were performed to evaluate eight brain regions of interest. Area under the receiver operating characteristic curve (AUROC) was calculated. RESULTS: Five of the six PLS-PSP patients (83.3%) were male. Median age at symptom onset was 61.5 (52.5-63) years, and all had mixed features of PLS and PSP. Volumes of the pallidum, caudate, midbrain, and cerebellar dentate were smaller in PSP-RS than PLS-PSP, providing good discrimination (AUROC = 0.75 for all). The susceptibilities in pallidum, midbrain, and cerebellar dentate were greater in PSP-RS compared to PLS-PSP, providing excellent discrimination (AUROC ≥ 0.90 for all). On DTI, fractional anisotropy (FA) in the posterior limb of the internal capsule from the corticospinal tract was lower in PLS-PSP compared to PSP-RS (AUROC = 0.86), but FA in the superior cerebellar peduncle was lower in PSP-RS (AUROC = 0.95). Pallidum flortaucipir PET uptake was greater in PSP-RS compared to PLS-PSP (AUROC = 0.74). CONCLUSIONS: Regional brain volume, tractography, and magnetic susceptibility, but not tau-PET, are useful in distinguishing PLS-PSP from PSP.


Assuntos
Imagem de Tensor de Difusão , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Imagem de Tensor de Difusão/métodos , Idoso , Neuroimagem/métodos , Imageamento por Ressonância Magnética , Diagnóstico Diferencial , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA