RESUMO
Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.
Assuntos
Acetamidas , Clorpirifos , Reativadores da Colinesterase , Inseticidas , Agentes Neurotóxicos , Paration , Animais , Camundongos , Acetilcolinesterase/química , Butirilcolinesterase/química , Clorpirifos/toxicidade , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Inseticidas/toxicidade , Macaca , Compostos Organofosforados/toxicidade , Oximas/farmacologia , Oximas/química , Oximas/uso terapêutico , Paration/efeitos adversos , Paration/toxicidadeRESUMO
Allylation reactions, often used as a key step for constructing complex molecules and drug candidates, typically rely on transition-metal (TM) catalysts. Even though TM-free radical allylations have been developed using allyl-stannanes, -sulfides, -silanes or -sulfones, much less procedures have been reported using simple and commercially available allyl halides, that are used for the preparation of the before-mentioned allyl derivatives. Here, we present a straightforward photocatalytic protocol for the decarboxylative allylation of oxime esters using allyl bromide derivatives under metal-free and mild conditions. This methodology yields a diverse variety of functionalized molecules including several pharmaceutically relevant molecules.
RESUMO
Research on the chemoselective metal-catalyzed hydrogenation of conjugated π-systems has mostly been focussed on enones. Herein, we communicate the understudied asymmetric hydrogenation of enimines catalyzed by N,P-iridium complexes and chemoselective toward the alkene. A number of enoxime ethers underwent hydrogenation smoothly to yield the desired products in high yield and stereopurity (up to 99 % yield, up to 99 % ee). No hydrogenation of the C=N π-bond was observed under the applied reaction conditions (20â bar H2, rt, DCM). It was demonstrated that the chiral oxime ether could be hydrolyzed into the ketone with complete preservation of the installed stereogenity at the α-carbon. At last, a binding mode of the substrate to the active iridium catalyst and the consequence for the stereoselective outcome was proposed.
RESUMO
The preparation of self-healing polyurethane elastomers (PUEs) incorporating dynamic bonds is of considerable practical significance. However, developing a PUE with outstanding mechanical properties and high self-healing efficiency poses a significant challenge. Herein, this work has successfully developed a series of self-healing PUEs with various outstanding properties through rational molecular design. These PUEs incorporate m-xylylene diisocyanate and reversible dimethylglyoxime as hard segment, along with polytetramethylene ether glycol as soft segment. A significant amount of dynamic oxime-carbamate and hydrogen bonds are formed in hard segment. The microphase separated structure of the PUEs enables them to be colorless with a transparency of >90%. Owing to the chemical composition and multiple dynamic interactions, the PUEs are endowed with ultra-high tensile strength of 34.5 MPa, satisfactory toughness of 53.9 MJ m-3, and great elastic recovery both at low and high strains. The movement of polymer molecular chains and the dynamic reversible interactions render a self-healing efficiency of 101% at 70 °C. In addition, this self-healing polyurethane could still maintain high mechanical properties after recycling. This study provides a design strategy for the preparation of a comprehensive polyurethane with superior overall performance, which holds wide application prospects in the fields of flexible displays and solar cells.
Assuntos
Carbamatos , Elastômeros , Ligação de Hidrogênio , Oximas , Poliuretanos , Resistência à Tração , Poliuretanos/química , Oximas/química , Elastômeros/química , Carbamatos/química , Estrutura Molecular , ElasticidadeRESUMO
The treatment of organophosphate (OP) anticholinesterases currently lacks an effective oxime reactivator of OP-inhibited acetylcholinesterase (AChE) which can penetrate the blood-brain barrier (BBB). Our laboratories have synthesized novel substituted phenoxyalkyl pyridinium oximes and tested them for their ability to promote survival of rats challenged with lethal doses of nerve agent surrogates. These previous studies demonstrated the ability of some of these oximes to promote 24-h survival to rats challenged with a lethal level of highly relevant surrogates for sarin and VX. The reactivation of OP-inhibited AChE in peripheral tissues was likely to be a major contributor to their efficacy in survival of lethal OP challenges. In the present study, twenty of these novel oximes were screened in vitro for reactivation ability for AChE in rat skeletal muscle and serum using two nerve agent surrogates: phthalimidyl isopropyl methylphosphonate (PIMP, a sarin surrogate) and 4-nitrophenyl ethyl methylphosphonate (NEMP, a VX surrogate). The oximes demonstrated a range of 23%-102% reactivation of AChE in vitro across both tissue types. Some of the novel oximes tested in the present study demonstrated the ability to more effectively reactivate AChE in serum than the currently approved oxime, 2-PAM. Therefore, some of these novel oximes have the potential to reverse AChE inhibition in peripheral target tissues and contribute to survival efficacy.
Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Músculo Esquelético , Organofosfatos , Oximas , Animais , Oximas/farmacologia , Oximas/química , Ratos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/sangue , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Organofosfatos/toxicidade , Masculino , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Compostos de Piridínio/farmacologia , Ratos Sprague-DawleyRESUMO
In this review, the current progress in the research and development of butyrylcholinesterase (BChE) reactivators is summarised and the advantages or disadvantages of these reactivators are critically discussed. Organophosphorus compounds such as nerve agents (sarin, tabun, VX) or pesticides (chlorpyrifos, diazinon) cause irreversible inhibition of acetylcholinesterase (AChE) and BChE in the human body. While AChE inhibition can be life threatening due to cholinergic overstimulation and crisis, selective BChE inhibition has presumably no adverse effects. Because BChE is mostly found in plasma, its activity is important for the scavenging of organophosphates before they can reach AChE in the central nervous system. Therefore, this enzyme in combination with its reactivator can be used as a pseudo-catalytic scavenger of organophosphates. Three structural types of BChE reactivators were found, i.e. bisquaternary salts, monoquaternary salts and uncharged compounds. Although the reviewed reactivators have certain limitations, the promising candidates for BChE reactivation were found in each structural group.
Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Compostos Organofosforados , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Humanos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Estrutura Molecular , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/síntese química , Relação Estrutura-Atividade , Animais , Acetilcolinesterase/metabolismo , Acetilcolinesterase/químicaRESUMO
Mono-quaternary pyridinium oximes derived from K-oximes K027, K048 and K203 were designed, synthesized and evaluated for the reactivation of organophosphate-inhibited cholinesterases. The incorporation of the halogen atoms to the structure decreased the pKa value of the oxime group resulting in an increased formation of oximate necessary for reactivation. The stability and pKa values were found to be similar to analogous bis-quaternary compounds. Some mono-quaternary oximes resulted as relatively strong inhibitors of human acetylcholinesterase. Nevertheless, the reactivation ability of mono-quaternary oximes for organophosphate-inhibited cholinesterases was lower compared to their bis-quaternary analogues. These results were further confirmed by the determination of reactivation kinetics, when in some cases novel compounds showed improvement reactivation compared to the tested standards, but no improvement to bis-quaternary K-oximes. A computational study investigated reactivation process for K027, and its two analogues for VX-inhibited AChE. This study revealed slight differences between reactivation of mono-quaternary and bis-quaternary oximes. Abbreviations: 2-PAM, pralidoxime; AChE, acetylcholinesterase; ACN, acetonitrile; ATCI, acetylcholine iodide; BChE, butyrylcholinesterase; BTCI, butyrylcholine iodide; Bu3SnSnBu3, bis(tributyltin) Et2O, diethyl ether; ChEs, cholinesterases; CNS, central nervous system; DAD, diode array detector; DIBAL-H, diisobutylaluminium hydride; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; DTNB, 5,5Ì-dithiobis-2-nitrobenzoic acid; Et3N, triethylamine; EtOAc, ethyl acetate; EWG, electron withdrawing group; HI-6, asoxime; hrAChE, human recombinant acetylcholinesterase; hrBChE, human recombinant butyrylcholinesterase; hrChEs, human recombinant cholinesterases; HPLC, high-performance liquid chromatography; HRMS, high-resolution mass spectrometry; KD, dissociation constant; kr, first-order reactivation rate constant; kr2, second-order reactivation rate constant; LüH-6, obidoxime; MeOH, methanol; MM, molecular mechanics; MMC-4, methoxime; m.p., melting point; NCIs, non-covalent interactions; NEDPA, 4-nitrophenyl ethyl dimethylphosphoramidate; NEMP, 4-nitrophenyl ethyl methylphosphonate; NIMP, isopropyl methylphosphonate; NMR, nuclear magnetic resonance spectroscopy; OPs, organophosphates; PBS, phosphate-buffered saline; Pd(dppf)Cl2.CH2Cl2, [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) in complex with dichloromethane; pKa, negative decimal logarithm of the dissociation constant; POX, paraoxon; PPh3, triphenylphosphine; QM, quantum mechanics; rt, room temperature; SN2, bimolecular nucleophilic substitution; SNAc, nucleophilic acyl substitution; THF, tetrahydrofuran; TMC-4, trimedoxime; TNB, 5-thio-2-nitrobenzoic acid; UHPLC, ultra high-performance liquid chromatography; UV, ultraviolet; UV-VIS, ultraviolet-visible.
RESUMO
Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 µM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.
Assuntos
Artrite Reumatoide , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Ratos , Relação Estrutura-Atividade , Estrutura Molecular , Inflamação/tratamento farmacológico , Masculino , Relação Dose-Resposta a Droga , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Fosfolipases A2/metabolismo , Administração Oral , Ratos Sprague-DawleyRESUMO
Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a â¼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.
Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Camundongos , Animais , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Mutação , Caderinas/genética , Caderinas/metabolismoRESUMO
Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.
Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Agentes Neurotóxicos , Compostos Organotiofosforados , Oximas , Sarina , Animais , Oximas/farmacologia , Oximas/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Ratos , Masculino , Compostos Organotiofosforados/toxicidade , Sarina/toxicidade , Agentes Neurotóxicos/toxicidade , Ratos Wistar , Halogenação , Substâncias para a Guerra Química/toxicidade , Compostos de Piridínio/farmacologia , Estabilidade de MedicamentosRESUMO
Nitrones are widely used as 1,3-dipoles in organic synthesis, but control of their reactions is not always easy. This review outlines our efforts to make the reactions of nitrones more predictable and easier to use. These efforts can be categorized into (1) 1,3-nucleophilic addition reaction of ketene silyl acetals to nitrones, (2) geometry-controlled cycloaddition of C-alkoxycarbonyl nitrones, (3) stereo-controlled cycloaddition using double asymmetric induction, and (4) generation of nitrones by N-selective modification of oximes.
Assuntos
Óxidos de Nitrogênio , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/síntese química , Reação de Cicloadição , Estrutura Molecular , Acetais/química , Acetais/síntese química , Cetonas/química , Cetonas/síntese química , Oximas/química , Oximas/síntese química , Etilenos/química , EstereoisomerismoRESUMO
Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Daunorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Oximas/uso terapêutico , Peptídeos/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/metabolismoRESUMO
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
RESUMO
Various functional groups have been considered as acceptors for halogen bonds, but the oxime functionality has received very little attention in this context. In this study, we focus on the analysis of the hydrogen and halogen bond preferences observed in the crystal structures of 5-halogeno-1H-isatin-3-oximes. These molecules can be involved in various non-covalent interactions, and the competition between these interactions has a decisive influence on their self-organization. In particular, we were interested to see whether the crystal structures of 5-halogeno-1H-isatin-3-oximes, especially bromine- and iodine-substituted ones, are characterized by the presence of halogen bonds formed with the oxime functionality. The oxime group proved its ability to compete with the other strong donor and acceptor sites by participating in the formation of cyclic hydrogen-bonded heterosynthons oximeâââamide and OoximeâââBr/I halogen bonds.
RESUMO
The Beckmann rearrangement of ketoximes to their corresponding amides, using a Brønsted acid-mediated fragmentation and migration sequence, has found wide-spread industrial application. We postulated that the development of a methodology to access ylideneamino sulfates using tributylsulfoammonium betaine (TBSAB) would afford isolable Beckmann-type intermediates and competent partners for subsequent rearrangement cascades. The ylideneamino sulfates generated, isolated as their tributylammonium salts, are sufficiently activated to undergo Beckmann rearrangement without additional reagent activation. The generation of sulfuric acid in situ from the ylideneamino sulfate giving rise to a routine Beckmann rearrangement and additional amide bond cleavage to the corresponding aniline was detrimental to reaction success. The screening of bases revealed inexpensive sodium bicarbonate to be an effective additive to prevent classic Brønsted acid-mediated fragmentation and achieve optimal conversions of up to 99%.
RESUMO
In this research, with an aim to develop novel pyrazole oxime ether derivatives possessing potential biological activity, thirty-two pyrazole oxime ethers, including a substituted pyridine ring, have been synthesized and structurally identified through 1H NMR, 13C NMR, and HRMS. Bioassay data indicated that most of these compounds owned strong insecticidal properties against Mythimna separata, Tetranychus cinnabarinus, Plutella xylostella, and Aphis medicaginis at a dosage of 500 µg/mL, and some title compounds were active towards Nilaparvata lugens at 500 µg/mL. Furthermore, some of the designed compounds had potent insecticidal effects against M. separata, T. cinnabarinus, or A. medicaginis at 100 µg/mL, with the mortalities of compounds 8a, 8c, 8d, 8e, 8f, 8g, 8o, 8s, 8v, 8x, and 8z against A. medicaginis, in particular, all reaching 100%. Even when the dosage was lowered to 20 µg/mL, compound 8s also expressed 50% insecticidal activity against M. separata, and compounds 8a, 8e, 8f, 8o, 8v, and 8x displayed more than 60% inhibition rates against A. medicaginis. The current results provided a significant basis for the rational design of biologically active pyrazole oxime ethers in future.
Assuntos
Desenho de Fármacos , Inseticidas , Oximas , Pirazóis , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Oximas/química , Oximas/farmacologia , Oximas/síntese química , Inseticidas/química , Inseticidas/síntese química , Inseticidas/farmacologia , Animais , Relação Estrutura-Atividade , Éteres/química , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Mariposas/efeitos dos fármacosRESUMO
The structural features and optical properties of supramolecular cyanoiron salts containing bis-pyridinium-4-oxime Toxogonin® (TOXO) as an electron acceptor are presented. The properties of the new TOXO-based cyanoiron materials were probed by employing two cyanoiron platforms: hexacyanoferrate(II), [Fe(CN)6]4- (HCF); and nitroprusside, [Fe(CN)5(NO)]2- (NP). Two water-insoluble inter-ionic donor-acceptor phases were characterized: the as-prepared microcrystalline reddish-brown (TOXO)2[Fe(CN)6]·8H2O (1a) with a medium-responsive, hydrochromic character; and the dark violet crystalline (TOXO)2[Fe(CN)6]·3.5H2O (1cr). Complex 1a, upon external stimulation, transforms to the violet anhydrous phase (TOXO)2[Fe(CN)6] (1b), which upon water uptake transforms back to 1a. Using the NP platform resulted in the water-insoluble crystalline salt TOXO[Fe(CN)5(NO)]·2H2O (2). The structures of 1cr and 2, solved by single-crystal X-ray diffraction, along with a comparative spectroscopic (UV-vis-NIR diffuse reflectance, IR, solid-state MAS-NMR, Mössbauer), thermal, powder X-ray diffraction, and microscopic analysis (SEM, TEM) of the isolated materials, provided insight for the supramolecular binding, electron-accepting, and H-bonding capabilities of TOXO in the self-assembly of these functionalized materials.
RESUMO
The coordination chemistry of 2-pyridyl ketoximes continues to attract the interest of many inorganic chemistry groups around the world for a variety of reasons. Cadmium(II) complexes of such ligands have provided models of solvent extraction of this toxic metal ion from aqueous environments using 2-pyridyl ketoxime extractants. Di-2-pyridyl ketone oxime (dpkoxH) is a unique member of this family of ligands because its substituent on the oxime carbon bears another potential donor site, i.e., a second 2-pyridyl group. The goal of this study was to investigate the reactions of cadmium(II) halides and dpkoxH in order to assess the structural role (if any) of the halogeno ligand and compare the products with their zinc(II) analogs. The synthetic studies provided access to complexes {[CdCl2(dpkoxH)â2H2O]}n (1â2H2O), {[CdBr2(dpkoxH)]}n (2) and {[CdI2(dpkoxH)]}n (3) in 50-60% yields. The structures of the complexes were determined by single-crystal X-ray crystallography. The compounds consist of structurally similar 1D zigzag chains, but only 2 and 3 are strictly isomorphous. Neighboring CdII atoms are alternately doubly bridged by halogeno and dpkoxH ligands, the latter adopting the η1:η1:η1:µ (or 2.0111 using Harris notation) coordination mode. A terminal halogeno group completes distorted octahedral coordination at each metal ion, and the coordination sphere of the CdII atoms is {CdII(η1 - X)(µ - X)2(Npyridyl)2(Noxime)} (X = Cl, Br, I). The trans-donor-atom pairs in 1â2H2O are Clterminal/Noxime and two Clbridging/Npyridyl; on the contrary, these donor-atom pairs are Xterminal/Npyridyl, Xbridging/Noxime, and Xbridging/Npyridyl (X = Br, I). There are intrachain H-bonding interactions in the structures. The packing of the chains in 1â2H2O is achieved via π-π stacking interactions, while the 3D architecture of the isomorphous 2 and 3 is built via C-HâââCg (Cg is the centroid of one pyridyl ring) and π-π overlaps. The molecular structures of 1â2H2O and 2 are different compared with their [ZnX2(dpkoxH)] (X = Cl, Br) analogs. The polymeric compounds were characterized by IR and Raman spectroscopies in the solid state, and the data were interpreted in terms of the known molecular structures. The solid-state structures of the complexes are not retained in DMSO, as proven via NMR (1H, 13C, and 113Cd NMR) spectroscopy and molar conductivity data. The complexes completely release the coordinated dpkoxH molecule, and the dominant species in solution seem to be [Cd(DMSO)6]2+ in the case of the chloro and bromo complexes and [CdI2(DMSO)4].
RESUMO
In the process of systematically studying the methylhydroxyiminoethaneamide bis-chelate ligands with polymethylene spacers of different lengths, L1-L3, and their transition metal complexes, a number of new Ni(II) and Cu(II) species have been isolated, and their molecular and crystal structures were determined using single-crystal X-ray diffraction. In all of these compounds, the divalent metal is coordinated by the ligand donor atoms in a square-planar arrangement. In addition, a serendipitously discovered new type of neutral Ni(II) complex, where the propane spacer of ligand L2 underwent oxidation to the propene spacer, and one of the amide groups was oxidised to the ketoimine, is also reported. The resulting ligand L2' affords the formation of neutral planar Ni(II) complexes, which are assembled in the solid state on top of each other, and yield two polymorphic structures. In both structures, the resulting infinite, exclusively parallel metal ion columns in ligand insulation may serve as precursor materials for sub-nano-conducting connectors. Overall, this paper reports the synthesis and characterisation of seven new anionic, cationic, and neutral Ni(II) and Cu(II) complexes, their crystal structures, as well as experimental and computed UV-Vis absorption spectra for two structurally similar Ni(II) complexes, yellow and red.
RESUMO
IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) is a specific c-Jun N-terminal kinase (JNK) inhibitor with anticancer and neuro- and cardioprotective properties. Because aryloxime derivatives undergo cytochrome P450-catalyzed oxidation to nitric oxide (NO) and ketones in liver microsomes, NO formation may be an additional mechanism of IQ-1 pharmacological action. In the present study, electron paramagnetic resonance (EPR) of the Fe2+ complex with diethyldithiocarbamate (DETC) as a spin trap and hemoglobin (Hb) was used to detect NO formation from IQ-1 in the liver and blood of rats, respectively, after IQ-1 intraperitoneal administration (50 mg/kg). Introducing the spin trap and IQ-1 led to signal characteristics of the complex (DETC)2-Fe2+-NO in rat liver. Similarly, the introduction of the spin trap components and IQ-1 resulted in an increase in the Hb-NO signal for both the R- and the T-conformers in blood samples. The density functional theory (DFT) calculations were in accordance with the experimental data and indicated that the NO formation of IQ-1 through the action of superoxide anion radical is thermodynamically favorable. We conclude that the administration of IQ-1 releases NO during its oxidoreductive bioconversion in vivo.