Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Plant J ; 115(1): 190-204, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36994650

RESUMO

Lignins and their antimicrobial-related polymers cooperatively enhance plant resistance to pathogens. Several isoforms of 4-coumarate-coenzyme A ligases (4CLs) have been identified as indispensable enzymes involved in lignin and flavonoid biosynthetic pathways. However, their roles in plant-pathogen interaction are still poorly understood. This study uncovers the role of Gh4CL3 in cotton resistance to the vascular pathogen Verticillium dahliae. The cotton 4CL3-CRISPR/Cas9 mutant (CR4cl) exhibited high susceptibility to V. dahliae. This susceptibility was most probably due to the reduction in the total lignin content and the biosynthesis of several phenolic metabolites, e.g., rutin, catechin, scopoletin glucoside, and chlorogenic acid, along with jasmonic acid (JA) attenuation. These changes were coupled with a significant reduction in 4CL activity toward p-coumaric acid substrate, and it is likely that recombinant Gh4CL3 could specifically catalyze p-coumaric acid to form p-coumaroyl-coenzyme A. Thus, overexpression of Gh4CL3 (OE4CL) showed increasing 4CL activity that augmented phenolic precursors, cinnamic, p-coumaric, and sinapic acids, channeling into lignin and flavonoid biosyntheses and enhanced resistance to V. dahliae. Besides, Gh4CL3 overexpression activated JA signaling that instantly stimulated lignin deposition and metabolic flux in response to pathogen, which all established an efficient plant defense response system, and inhibited V. dahliae mycelium growth. Our results propose that Gh4CL3 acts as a positive regulator for cotton resistance against V. dahliae by promoting JA signaling-mediated enhanced cell wall rigidity and metabolic flux.


Assuntos
Resistência à Doença , Verticillium , Ligases/metabolismo , Lignina/metabolismo , Verticillium/fisiologia , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
Biochem Biophys Res Commun ; 690: 149219, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995451

RESUMO

There has been a growth in the use of plant compounds as biological products for the prevention and treatment of various diseases, including cancer. As a phenolic compound, p-Coumaric acid (p-CA) demonstrates preferrable biological effects such as anti-cancer activities. A nano-liposomal carrier containing p-CA was designed to increase the anticancer effectiveness of this compound on melanoma cells (A375). To determine the characteristics of synthesized liposomes, encapsulation efficiency was measured. In addition, the particle size was measured utilizing DLS, FTIR, and morphology examination using SEM. In vitro release was also studied through the dialysis method, while toxicity was evaluated using the MTT assay. To determine apoptotic characteristics, biotechnology tools like flow cytometry, real time PCR, and atomic force microscopy (AFM) were employed. The findings indicated that in the cells treated with the liposomal form of p-CA, the amount of elastic modulus was higher compared to its free form. Kinetic modeling indicated that the best fitting model was zero-order.


Assuntos
Lipossomos , Melanoma , Humanos , Melanoma/tratamento farmacológico , Ácidos Cumáricos/farmacologia , Apoptose
3.
Biotechnol Bioeng ; 121(7): 2147-2162, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666765

RESUMO

P-coumaric acid (p-CA), a pant metabolite with antioxidant and anti-inflammatory activity, is extensively utilized in biomedicine, food, and cosmetics industry. In this study, a synthetic pathway (PAL) for p-CA was designed, integrating three enzymes (AtPAL2, AtC4H, AtATR2) into a higher l-phenylalanine-producing strain Escherichia coli PHE05. However, the lower soluble expression and activity of AtC4H in the PAL pathway was a bottleneck for increasing p-CA titers. To overcome this limitation, the soluble expression of AtC4H was enhanced through N-terminal modifications. And an optimal mutant, AtC4HL373T/G211H, which exhibited a 4.3-fold higher kcat/Km value compared to the wild type, was developed. In addition, metabolic engineering strategies were employed to increase the intracellular NADPH pool. Overexpression of ppnk in engineered E. coli PHCA20 led to a 13.9-folds, 1.3-folds, and 29.1% in NADPH content, the NADPH/NADP+ ratio and p-CA titer, respectively. These optimizations significantly enhance p-CA production, in a 5-L fermenter using fed-batch fermentation, the p-CA titer, yield and productivity of engineered strain E. coli PHCA20 were 3.09 g/L, 20.01 mg/g glucose, and 49.05 mg/L/h, respectively. The results presented here provide a novel way to efficiently produce the plant metabolites using an industrial strain.


Assuntos
Ácidos Cumáricos , Escherichia coli , Glucose , Engenharia Metabólica , Propionatos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Cumáricos/metabolismo , Engenharia Metabólica/métodos , Glucose/metabolismo , Propionatos/metabolismo
4.
Arch Microbiol ; 206(5): 223, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642150

RESUMO

Probiotics are defined as "live microorganisms that provide health benefits to the host when administered in adequate amounts." Probiotics have beneficial effects on human health, including antibacterial activity against intestinal pathogens, regulation of blood cholesterol levels, reduction of colitis and inflammation incidence, regulation of the immune system, and prevention of colon cancer. In addition to probiotic bacteria, some phenolic compounds found in foods we consume (both food and beverages) have positive effects on human health. p-coumaric acid (p-CA) is one of the most abundant phenolic compounds in nature and human diet. The interactions between these two different food components (phenolics and probiotics), resulting in more beneficial combinations called synbiotics, are not well understood in terms of how they will affect the gut microbiota by promoting the probiotic properties and growth of probiotic bacteria. Thus, this study aimed to investigate synbiotic relationship between p-CA and Lactobacillus acidophilus LA-5 (LA-5), Lacticaseibacillus rhamnosus GG (LGG). Probiotic bacteria were grown in the presence of p-CA at different concentrations, and the effects of p-CA on probiotic properties, as well as its in vitro effects on AChE and BChE activities, were investigated. Additionally, Surface analysis was conducted using FTIR. The results showed that treatment with p-CA at different concentrations did not exhibit any inhibitory effect on the growth kinetics of LA-5 and LGG probiotic bacteria. Additionally, both probiotic bacteria demonstrated high levels of antibacterial properties. It showed that it increased the auto-aggregation of both probiotics. While p-CA increased co-aggregation of LA-5 and LGG against Escherichia coli, it decreased co-aggregation against Staphylococcus aureus. Probiotics grown with p-CA were more resistant to pepsin. While p-CA increased the resistance of LA-5 to bile salt, it decreased the resistance of LGG. The combinations of bacteria and p-CA efficiently suppressed AChE and BChE with inhibition (%) 11.04-68.43 and 13.20-65.72, respectively. Furthermore, surface analysis was conducted using FTIR to investigate the interaction of p-coumaric acid with LA-5 and LGG, and changes in cell components on the bacterial surface were analyzed. The results, recorded in range of 4000 -600 cm-1 with resolution of 4 cm-1, demonstrated that p-CA significantly affected only the phosphate/CH ratio for both bacteria. These results indicate the addition of p-CA to the probiotic growth may enhance the probiotic properties of bacteria.


Assuntos
Ácidos Cumáricos , Lacticaseibacillus rhamnosus , Probióticos , Humanos , Lactobacillus acidophilus , Probióticos/farmacologia , Antibacterianos/farmacologia
5.
Microb Cell Fact ; 23(1): 57, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369470

RESUMO

BACKGROUND: Phenylpropanoids are a large group of plant secondary metabolites with various biological functions, derived from aromatic amino acids. Cyanobacteria are promising host organisms for sustainable production of plant phenylpropanoids. We have previously engineered Synechocystis sp. PCC 6803 to produce trans-cinnamic acid (tCA) and p-coumaric acid (pCou), the first intermediates of phenylpropanoid pathway, by overexpression of phenylalanine- and tyrosine ammonia lyases. In this study, we aimed to enhance the production of the target compounds tCA and pCou in Synechocystis. RESULTS: We eliminated the 4-hydroxyphenylpyruvate dioxygenase (HPPD) activity, which is a competing pathway consuming tyrosine and, possibly, phenylalanine for tocopherol synthesis. Moreover, several genes of the terminal steps of the shikimate pathway were overexpressed alone or in operons, such as aromatic transaminases, feedback insensitive cyclohexadienyl dehydrogenase (TyrC) from Zymomonas mobilis and the chorismate mutase (CM) domain of the fused chorismate mutase/prephenate dehydratase enzyme from Escherichia coli. The obtained engineered strains demonstrated nearly 1.5 times enhanced tCA and pCou production when HPPD was knocked out compared to the parental production strains, accumulating 138 ± 3.5 mg L-1 of tCA and 72.3 ± 10.3 mg L-1 of pCou after seven days of photoautotrophic growth. However, there was no further improvement when any of the pathway genes were overexpressed. Finally, we used previously obtained AtPRM8 and TsPRM8 Synechocystis strains with deregulated shikimate pathway as a background for the overexpression of synthetic constructs with ppd knockout. CONCLUSIONS: HPPD elimination enhances the tCA and pCou productivity to a similar extent. The use of PRM8 based strains as a background for overexpression of synthetic constructs, however, did not promote tCA and pCou titers, which indicates a tight regulation of the terminal steps of phenylalanine and tyrosine synthesis. This work contributes to establishing cyanobacteria as hosts for phenylpropanoid production.


Assuntos
Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Engenharia Metabólica , Ácido Chiquímico/metabolismo , Tirosina/metabolismo , Fenilalanina/metabolismo , Corismato Mutase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
J Biochem Mol Toxicol ; 38(3): e23668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439645

RESUMO

Cardiovascular diseases cause a large number of deaths throughout the world. No research was conducted earlier on p-coumaric acid's effect on tachycardia, inflammation, ion pump dysfunction, and electrolyte imbalance. Hence, we appraised the above-said parameters in isoproterenol-induced myocardial infarcted rats. This investigation included 24 male albino Wistar rats in 4 groups. Normal control Group 1, p-coumaric acid (8 mg/kg body weight) alone treated Group 2, Isoproterenol (100 mg/kg body weight) induced myocardial infarcted Group 3, p-coumaric acid (8 mg/kg body weight) pretreated isoproterenol (100 mg/kg body weight) induced Group 4. After 1 day of the last dose of isoproterenol injection (day 10), rats were killed and blood and heart were taken and inflammatory markers, lipid peroxidation, nonenzymatic antioxidants, ion pumps, and electrolytes were measured. The heart rate, serum cardiac troponin-T, serum/plasma inflammatory markers, and heart proinflammatory cytokines were raised in isoproterenol-induced rats. Isoproterenol also enhanced plasma lipid peroxidation, lessened plasma nonenzymatic antioxidants, and altered heart ion pumps and serum and heart electrolytes. In this study, p-coumaric acid pretreatment orally for 7 days to isoproterenol-induced myocardial infarcted rats prevented changes in the above-cited parameters. p-Coumaric acid's anti-tachycardial, anti-inflammatory, anti-ion pump dysfunction and anti-electrolyte imbalance properties are the mechanisms for these cardioprotective effects.


Assuntos
Ácidos Cumáricos , Infarto do Miocárdio , Taquicardia , Masculino , Animais , Ratos , Isoproterenol/toxicidade , Taquicardia/induzido quimicamente , Taquicardia/tratamento farmacológico , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Antioxidantes/farmacologia , Bombas de Íon , Ratos Wistar , Peso Corporal
7.
Appl Microbiol Biotechnol ; 108(1): 165, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252275

RESUMO

Ferulic acid (FA) and p-coumaric acid (p-CA) are hydroxycinnamic acid inhibitors that are mainly produced during the pretreatment of lignocellulose. To date, the inhibitory mechanism of hydroxycinnamic acid compounds on Saccharomyces cerevisiae has not been fully elucidated. In this study, liquid chromatography-mass spectrometry (LC-MS) and scanning electron microscopy (SEM) were used to investigate the changes in S. cerevisiae cells treated with FA and p-CA. In this experiment, the control group was denoted as group CK, the FA-treated group was denoted as group F, and the p-CA-treated group was denoted as group P. One hundred different metabolites in group F and group CK and 92 different metabolites in group P and group CK were selected and introduced to metaboanalyst, respectively. A total of 38 metabolic pathways were enriched in S. cerevisiae under FA stress, and 27 metabolic pathways were enriched in S. cerevisiae under p-CA stress as identified through Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis. The differential metabolites involved included S-adenosine methionine, L-arginine, and cysteine, which were significantly downregulated, and acetyl-CoA, L-glutamic acid, and L-threonine, which were significantly upregulated. Analysis of differential metabolic pathways showed that the differentially expressed metabolites were mainly related to amino acid metabolism, nucleotide metabolism, fatty acid degradation, and the tricarboxylic acid cycle (TCA). Under the stress of FA and p-CA, the metabolism of some amino acids was blocked, which disturbed the redox balance in the cells and destroyed the synthesis of most proteins, which was the main reason for the inhibition of yeast cell growth. This study provided a strong scientific reference to improve the durability of S. cerevisiae against hydroxycinnamic acid inhibitors. KEY POINTS: • Morphological changes of S. cerevisiae cells under inhibitors stress were observed. • Changes of the metabolites in S. cerevisiae cells were explored by metabolomics. • One of the inhibitory effects on yeast is due to changes in the metabolic network.


Assuntos
Ácidos Cumáricos , Saccharomyces cerevisiae , Ácidos Cumáricos/farmacologia , Metabolômica , Aminoácidos
8.
Cell Biochem Funct ; 42(4): e4076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895919

RESUMO

Potassium bromate (KBrO3) is a common dietary additive, pharmaceutical ingredient, and significant by-product of water disinfection. p-coumaric acid (PCA) is a naturally occurring nutritional polyphenolic molecule with anti-inflammatory and antioxidant activities. The goal of the current investigation was to examine the protective effects of p-coumaric acid against the liver damage caused by KBrO3. The five groups of animals-control, KBrO3 (100 mg/kg bw), treatment with KBrO3 along with Silymarin (100 mg/kg bw), KBrO3, followed by PCA (100 mg/bw, and 200 mg/kg bw) were randomly assigned to the animals. Mice were slaughtered, and blood and liver tissues were taken for assessment of the serum biochemical analysis for markers of liver function (alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, and protein), lipid markers and antioxidant markers (TBARS), glutathione peroxidase [GSH-Px], glutathione (GSH), and markers of hepatic oxidative stress (CAT), (SOD), as well as histological H&E stain, immunohistochemical stain iNOS, and COX-2 as markers of inflammatory cytokines. PCA protects against acute liver failure by preventing the augmentation of blood biochemical markers and lipid profiles. In mice liver tissues, KBrO3 increases lipid indicators and depletes antioxidants, leading to an increase in JNK, ERK, and p38 phosphorylation. Additionally, PCA inhibited the production of pro-inflammatory cytokines and reduced the histological alterations in KBrO3-induced hepatotoxicity. Notably, PCA effectively mitigated KBrO3-induced hepatic damage by obstructing the TNF-α/NF-kB-mediated inflammatory process signaling system. Additionally, in KBrO3-induced mice, PCA increased the intensities of hepatic glutathione (GSH), SOD, GSH-Px, catalase, and GSH activities. Collectively, we demonstrate the molecular evidence that PCA eliminated cellular inflammatory conditions, mitochondrial oxidative stress, and the TNF-α/NF-κB signaling process, thereby preventing KBrO3-induced hepatocyte damage.


Assuntos
Bromatos , Ácidos Cumáricos , Fígado , Propionatos , Animais , Camundongos , Ácidos Cumáricos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Substâncias Protetoras/farmacologia
9.
AAPS PharmSciTech ; 25(3): 56, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448576

RESUMO

Novel p-coumaric acid microemulsion systems were developed to circumvent its absorption and bioavailability challenges. Simplex-lattice mixture design and machine learning methods were employed for optimization. Two optimized formulations were characterized using in vitro re-dispersibility and cytotoxicity on various tumor cell lines (MCF-7, CaCO2, and HepG2). The in vivo bioavailability profiles of the drug loaded in the two microemulsion systems and in the suspension form were compared. The optimized microemulsions composed of Labrafil M1944 CS (5.67%)/Tween 80 (38.71%)/Labrasol (38.71%)/water (16.92%) and Capryol 90 (0.50%)/Transcutol P (26.67%)/Tween 80 (26.67%)/Labrasol (26.67%)/water (19.50%), respectively. They revealed uniform and stable p-coumaric acid-loaded microemulsion systems with a droplet size diameter of about 10 nm. The loaded microemulsion formulations enhanced the drug re-dispersibility in contrast to the drug suspension which exhibited 5 min lag time. The loaded formulae were significantly more cytotoxic on all cell lines by 11.98-16.56 folds on MCF-7 and CaCo2 cells and 47.82-98.79 folds on HepG2 cells higher than the pure drug. The optimized microemulsions were 1.5-1.8 times more bioavailable than the drug suspension. The developed p-coumaric acid microemulsion systems could be considered a successful remedy for diverse types of cancer.


Assuntos
Ácidos Cumáricos , Aprendizado de Máquina , Polissorbatos , Humanos , Células CACO-2 , Água
10.
Beilstein J Org Chem ; 20: 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213839

RESUMO

Recently, we identified the biosynthetic gene cluster of avenalumic acid (ava cluster) and revealed its entire biosynthetic pathway, resulting in the discovery of a diazotization-dependent deamination pathway. Genome database analysis revealed the presence of more than 100 ava cluster-related biosynthetic gene clusters (BGCs) in actinomycetes; however, their functions remained unclear. In this study, we focused on an ava cluster-related BGC in Kutzneria albida (cma cluster), and revealed that it is responsible for p-coumaric acid biosynthesis by heterologous expression of the cma cluster and in vitro enzyme assays using recombinant Cma proteins. The ATP-dependent diazotase CmaA6 catalyzed the diazotization of both 3-aminocoumaric acid and 3-aminoavenalumic acid using nitrous acid in vitro. In addition, the high efficiency of the CmaA6 reaction enabled us to perform a kinetic analysis of AvaA7, which confirmed that AvaA7 catalyzes the denitrification of 3-diazoavenalumic acid in avenalumic acid biosynthesis. This study deepened our understanding of the highly reducing type II polyketide synthase system as well as the diazotization-dependent deamination pathway for the production of avenalumic acid or p-coumaric acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA