Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Theor Biol ; 581: 111747, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38278344

RESUMO

Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribution is observed in adipose tissue. We propose a model based on a partial differential equation to describe adipocyte size distribution. The model includes a description of the lipid fluxes and the cell size fluctuations and using a formulation of a stationary solution fast computation of bimodal distribution is achieved. We investigate the parameter identifiability and estimate parameter values with CMA-ES algorithm. We first validate the procedure on synthetic data, then we estimate parameter values with experimental data of 32 rats. We discuss the estimated parameter values and their variability within the population, as well as the relation between estimated values and their biological significance. Finally, a sensitivity analysis is performed to specify the influence of parameters on cell size distribution and explain the differences between the model and the measurements. The proposed framework enables the characterization of adipocyte size distribution with four parameters and can be easily adapted to measurements of cell size distribution in different health conditions.


Assuntos
Modelos Biológicos , Modelos Teóricos , Ratos , Animais , Adipócitos , Tecido Adiposo , Tamanho Celular
2.
J Theor Biol ; 584: 111780, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458313

RESUMO

This paper revisits the observability and identifiability properties of a popular ODE model commonly adopted to characterize the HIV dynamics in HIV-infected patients with antiretroviral treatment. These properties are determined by using the general analytical solution of the unknown input observability problem, introduced very recently in Martinelli (2022). This solution provides the systematic procedures able to determine the state observability and the parameter identifiability of any ODE model, in particular, even in the presence of time varying parameters. Four variants of the HIV model are investigated. They differ because some of their parameters are considered constant or time varying. Fundamental new properties, which also highlight an error in the scientific literature, are automatically determined and discussed. Additionally, for each variant, the paper provides a quantitative answer to the following practical question: What is the minimal external information (external to the available measurements of the system outputs) required to make observable the state and identifiable all the model parameters? The answer to this fundamental question is obtained by exploiting the concept of continuous symmetry, recently introduced in Martinelli (2019). This concept allows us to determine a first preliminary general result which is then applied to the HIV model. Finally, for each variant, the paper concludes by providing a redefinition of the state and of the parameters in order to obtain a full description of the system only in terms of a state which is observable and a set of parameters which are identifiable (both constant and time varying).


Assuntos
Infecções por HIV , Modelos Biológicos , Humanos , Dinâmica não Linear , Infecções por HIV/tratamento farmacológico
3.
Bull Math Biol ; 86(7): 80, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801489

RESUMO

Many commonly used mathematical models in the field of mathematical biology involve challenges of parameter non-identifiability. Practical non-identifiability, where the quality and quantity of data does not provide sufficiently precise parameter estimates is often encountered, even with relatively simple models. In particular, the situation where some parameters are identifiable and others are not is often encountered. In this work we apply a recent likelihood-based workflow, called Profile-Wise Analysis (PWA), to non-identifiable models for the first time. The PWA workflow addresses identifiability, parameter estimation, and prediction in a unified framework that is simple to implement and interpret. Previous implementations of the workflow have dealt with idealised identifiable problems only. In this study we illustrate how the PWA workflow can be applied to both structurally non-identifiable and practically non-identifiable models in the context of simple population growth models. Dealing with simple mathematical models allows us to present the PWA workflow in a didactic, self-contained document that can be studied together with relatively straightforward Julia code provided on GitHub . Working with simple mathematical models allows the PWA workflow prediction intervals to be compared with gold standard full likelihood prediction intervals. Together, our examples illustrate how the PWA workflow provides us with a systematic way of dealing with non-identifiability, especially compared to other approaches, such as seeking ad hoc parameter combinations, or simply setting parameter values to some arbitrary default value. Importantly, we show that the PWA workflow provides insight into the commonly-encountered situation where some parameters are identifiable and others are not, allowing us to explore how uncertainty in some parameters, and combinations of parameters, regardless of their identifiability status, influences model predictions in a way that is insightful and interpretable.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Humanos , Funções Verossimilhança , Simulação por Computador , Dinâmica Populacional/estatística & dados numéricos , Fluxo de Trabalho , Algoritmos
4.
Bull Math Biol ; 86(4): 36, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430382

RESUMO

Identifying unique parameters for mathematical models describing biological data can be challenging and often impossible. Parameter identifiability for partial differential equations models in cell biology is especially difficult given that many established in vivo measurements of protein dynamics average out the spatial dimensions. Here, we are motivated by recent experiments on the binding dynamics of the RNA-binding protein PTBP3 in RNP granules of frog oocytes based on fluorescence recovery after photobleaching (FRAP) measurements. FRAP is a widely-used experimental technique for probing protein dynamics in living cells, and is often modeled using simple reaction-diffusion models of the protein dynamics. We show that current methods of structural and practical parameter identifiability provide limited insights into identifiability of kinetic parameters for these PDE models and spatially-averaged FRAP data. We thus propose a pipeline for assessing parameter identifiability and for learning parameter combinations based on re-parametrization and profile likelihoods analysis. We show that this method is able to recover parameter combinations for synthetic FRAP datasets and investigate its application to real experimental data.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Recuperação de Fluorescência Após Fotodegradação , Modelos Teóricos , Difusão
5.
Anal Biochem ; 679: 115263, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549723

RESUMO

Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Langmuir binding model to derive rate constants. However, when it is necessary to immobilize antigens instead of the mAbs, a bivalent analyte (1:2) binding model is required for kinetics analysis. This model is lacking in data analysis packages associated with high throughput SPR instruments and the packages containing this model do not explore multiple local minima and parameter identifiability issues that are common in non-linear optimization. Therefore, we developed a method to use a system of ordinary differential equations for analyzing 1:2 binding kinetics data. Salient features of this method include a grid search on parameter initialization and a profile likelihood approach to determine parameter identifiability. Using this method we found a non-identifiable parameter in data set collected under the standard experimental design. A simulation-guided improved experimental design led to reliable estimation of all rate constants. The method and approach developed here for analyzing 1:2 binding kinetics data will be valuable for expeditious therapeutic antibody discovery research.


Assuntos
Reações Antígeno-Anticorpo , Antígenos , Funções Verossimilhança , Anticorpos Monoclonais/química , Ressonância de Plasmônio de Superfície/métodos , Cinética
6.
J Theor Biol ; 559: 111377, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36470468

RESUMO

The Lotka-Volterra model is widely used to model interactions between two species. Here, we generate synthetic data mimicking competitive, mutualistic and antagonistic interactions between two tumor cell lines, and then use the Lotka-Volterra model to infer the interaction type. Structural identifiability of the Lotka-Volterra model is confirmed, and practical identifiability is assessed for three experimental designs: (a) use of a single data set, with a mixture of both cell lines observed over time, (b) a sequential design where growth rates and carrying capacities are estimated using data from experiments in which each cell line is grown in isolation, and then interaction parameters are estimated from an experiment involving a mixture of both cell lines, and (c) a parallel experimental design where all model parameters are fitted to data from two mixtures (containing both cell lines but with different initial ratios) simultaneously. Each design is tested on data generated from the Lotka-Volterra model with noise added, to determine efficacy in an ideal sense. In addition to assessing each design for practical identifiability, we investigate how the predictive power of the model - i.e., its ability to fit data for initial ratios other than those to which it was calibrated - is affected by the choice of experimental design. The parallel calibration procedure is found to be optimal and is further tested on in silico data generated from a spatially-resolved cellular automaton model, which accounts for oxygen consumption and allows for variation in the intensity level of the interaction between the two cell lines. We use this study to highlight the care that must be taken when interpreting parameter estimates for the spatially-averaged Lotka-Volterra model when it is calibrated against data produced by the spatially-resolved cellular automaton model, since baseline competition for space and resources in the CA model may contribute to a discrepancy between the type of interaction used to generate the CA data and the type of interaction inferred by the LV model.


Assuntos
Modelos Biológicos , Simbiose , Linhagem Celular Tumoral
7.
J Theor Biol ; 568: 111497, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087049

RESUMO

Recent evidence suggests that nongenetic (epigenetic) mechanisms play an important role at all stages of cancer evolution. In many cancers, these mechanisms have been observed to induce dynamic switching between two or more cell states, which commonly show differential responses to drug treatments. To understand how these cancers evolve over time, and how they respond to treatment, we need to understand the state-dependent rates of cell proliferation and phenotypic switching. In this work, we propose a rigorous statistical framework for estimating these parameters, using data from commonly performed cell line experiments, where phenotypes are sorted and expanded in culture. The framework explicitly models the stochastic dynamics of cell division, cell death and phenotypic switching, and it provides likelihood-based confidence intervals for the model parameters. The input data can be either the fraction of cells or the number of cells in each state at one or more time points. Through a combination of theoretical analysis and numerical simulations, we show that when cell fraction data is used, the rates of switching may be the only parameters that can be estimated accurately. On the other hand, using cell number data enables accurate estimation of the net division rate for each phenotype, and it can even enable estimation of the state-dependent rates of cell division and cell death. We conclude by applying our framework to a publicly available dataset.


Assuntos
Neoplasias , Humanos , Funções Verossimilhança , Divisão Celular , Fenótipo
8.
Bull Math Biol ; 86(1): 11, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159216

RESUMO

Across a broad range of disciplines, agent-based models (ABMs) are increasingly utilized for replicating, predicting, and understanding complex systems and their emergent behavior. In the biological and biomedical sciences, researchers employ ABMs to elucidate complex cellular and molecular interactions across multiple scales under varying conditions. Data generated at these multiple scales, however, presents a computational challenge for robust analysis with ABMs. Indeed, calibrating ABMs remains an open topic of research due to their own high-dimensional parameter spaces. In response to these challenges, we extend and validate our novel methodology, Surrogate Modeling for Reconstructing Parameter Surfaces (SMoRe ParS), arriving at a computationally efficient framework for connecting high dimensional ABM parameter spaces with multidimensional data. Specifically, we modify SMoRe ParS to initially confine high dimensional ABM parameter spaces using unidimensional data, namely, single time-course information of in vitro cancer cell growth assays. Subsequently, we broaden the scope of our approach to encompass more complex ABMs and constrain parameter spaces using multidimensional data. We explore this extension with in vitro cancer cell inhibition assays involving the chemotherapeutic agent oxaliplatin. For each scenario, we validate and evaluate the effectiveness of our approach by comparing how well ABM simulations match the experimental data when using SMoRe ParS-inferred parameters versus parameters inferred by a commonly used direct method. In so doing, we show that our approach of using an explicitly formulated surrogate model as an interlocutor between the ABM and the experimental data effectively calibrates the ABM parameter space to multidimensional data. Our method thus provides a robust and scalable strategy for leveraging multidimensional data to inform multiscale ABMs and explore the uncertainty in their parameters.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Incerteza , Fagocitose
9.
J Math Biol ; 86(4): 50, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864131

RESUMO

Density dependence is important in the ecology and evolution of microbial and cancer cells. Typically, we can only measure net growth rates, but the underlying density-dependent mechanisms that give rise to the observed dynamics can manifest in birth processes, death processes, or both. Therefore, we utilize the mean and variance of cell number fluctuations to separately identify birth and death rates from time series that follow stochastic birth-death processes with logistic growth. Our nonparametric method provides a novel perspective on stochastic parameter identifiability, which we validate by analyzing the accuracy in terms of the discretization bin size. We apply our method to the scenario where a homogeneous cell population goes through three stages: (1) grows naturally to its carrying capacity, (2) is treated with a drug that reduces its carrying capacity, and (3) overcomes the drug effect to restore its original carrying capacity. In each stage, we disambiguate whether the dynamics occur through the birth process, death process, or some combination of the two, which contributes to understanding drug resistance mechanisms. In the case of limited sample sizes, we provide an alternative method based on maximum likelihood and solve a constrained nonlinear optimization problem to identify the most likely density dependence parameter for a given cell number time series. Our methods can be applied to other biological systems at different scales to disambiguate density-dependent mechanisms underlying the same net growth rate.


Assuntos
Ecologia , Contagem de Células , Dinâmica Populacional , Tamanho da Amostra , Fatores de Tempo
10.
J Theor Biol ; 532: 110921, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34582827

RESUMO

Mycobacterium tuberculosis can exist within a host for lengthy periods, tolerating even antibiotic challenge. This non-heritable, antibiotic tolerant "persister" state, is thought to underlie latent Tuberculosis (TB) infection and a deeper understanding thereof could inform treatment strategies. In addition to experimental studies, mathematical and computational modelling approaches are widely employed to study persistence from both an in vivo and in vitro perspective. However, specialized models (partial differential equations, agent-based, multiscale, etc.) rely on several difficult to determine parameters. In this study, a dynamic mathematical model was developed to predict the response of Mycobacterium smegmatis (a model organism for M. tuberculosis) grown in batch culture and subjected to a range of in vitro environmental stresses. Lag phase dynamics, pH variations and internal nitrogen storage were mechanistically modelled. Experimental results were used to train model parameters using global optimization, with extensive subsequent model validation to ensure extensibility to more complex modelling frameworks. This included an identifiability analysis which indicated that seven of the thirteen model parameters were uniquely identifiable. Non-identifiable parameters were critically evaluated. Model predictions compared to validation data (based on experimental results not used during training) were accurate with less than 16% maximum absolute percentage error, indicating that the model is accurate even when extrapolating to new experimental conditions. The bulk growth model can be extended to spatially heterogeneous simulations such as an agent-based model to simulate in vitro granuloma models or, eventually, in vivo conditions, where distributed environmental conditions are difficult to measure.


Assuntos
Mycobacterium smegmatis , Mycobacterium tuberculosis , Concentração de Íons de Hidrogênio , Modelos Teóricos , Nutrientes
11.
Bull Math Biol ; 84(11): 130, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175705

RESUMO

Several mathematical models to predict tumor growth over time have been developed in the last decades. A central aspect of such models is the interaction of tumor cells with immune effector cells. The Kuznetsov model (Kuznetsov et al. in Bull Math Biol 56(2):295-321, 1994) is the most prominent of these models and has been used as a basis for many other related models and theoretical studies. However, none of these models have been validated with large-scale real-world data of human patients treated with cancer immunotherapy. In addition, parameter estimation of these models remains a major bottleneck on the way to model-based and data-driven medical treatment. In this study, we quantitatively fit Kuznetsov's model to a large dataset of 1472 patients, of which 210 patients have more than six data points, by estimating the model parameters of each patient individually. We also conduct a global practical identifiability analysis for the estimated parameters. We thus demonstrate that several combinations of parameter values could lead to accurate data fitting. This opens the potential for global parameter estimation of the model, in which the values of all or some parameters are fixed for all patients. Furthermore, by omitting the last two or three data points, we show that the model can be extrapolated and predict future tumor dynamics. This paves the way for a more clinically relevant application of mathematical tumor modeling, in which the treatment strategy could be adjusted in advance according to the model's future predictions.


Assuntos
Conceitos Matemáticos , Neoplasias , Contagem de Células , Humanos , Imunoterapia , Modelos Biológicos , Neoplasias/terapia
12.
J Math Biol ; 84(7): 56, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35577967

RESUMO

Mechanistic models are a powerful tool to gain insights into biological processes. The parameters of such models, e.g. kinetic rate constants, usually cannot be measured directly but need to be inferred from experimental data. In this article, we study dynamical models of the translation kinetics after mRNA transfection and analyze their parameter identifiability. That is, whether parameters can be uniquely determined from perfect or realistic data in theory and practice. Previous studies have considered ordinary differential equation (ODE) models of the process, and here we formulate a stochastic differential equation (SDE) model. For both model types, we consider structural identifiability based on the model equations and practical identifiability based on simulated as well as experimental data and find that the SDE model provides better parameter identifiability than the ODE model. Moreover, our analysis shows that even for those parameters of the ODE model that are considered to be identifiable, the obtained estimates are sometimes unreliable. Overall, our study clearly demonstrates the relevance of considering different modeling approaches and that stochastic models can provide more reliable and informative results.


Assuntos
Modelos Biológicos , Cinética , RNA Mensageiro/genética , Transfecção
13.
Biometrics ; 77(1): 352-361, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32243577

RESUMO

State-space models (SSMs) are a popular tool for modeling animal abundances. Inference difficulties for simple linear SSMs are well known, particularly in relation to simultaneous estimation of process and observation variances. Several remedies to overcome estimation problems have been studied for relatively simple SSMs, but whether these challenges and proposed remedies apply for nonlinear stage-structured SSMs, an important class of ecological models, is less well understood. Here we identify improvements for inference about nonlinear stage-structured SSMs fit with biased sequential life stage data. Theoretical analyses indicate parameter identifiability requires covariates in the state processes. Simulation studies show that plugging in externally estimated observation variances, as opposed to jointly estimating them with other parameters, reduces bias and standard error of estimates. In contrast to previous results for simple linear SSMs, strong confounding between jointly estimated process and observation variance parameters was not found in the models explored here. However, when observation variance was also estimated in the motivating case study, the resulting process variance estimates were implausibly low (near-zero). As SSMs are used in increasingly complex ways, understanding when inference can be expected to be successful, and what aids it, becomes more important. Our study illustrates (a) the need for relevant process covariates and (b) the benefits of using externally estimated observation variances for inference about nonlinear stage-structured SSMs.


Assuntos
Grupos de População Animal , Dinâmica não Linear , Animais , Modelos Teóricos , Dinâmica Populacional , Simulação de Ambiente Espacial
14.
Bull Math Biol ; 83(5): 47, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751272

RESUMO

During the hemostatic phase of wound healing, vascular injury leads to endothelial cell damage, initiation of a coagulation cascade involving platelets, and formation of a fibrin-rich clot. As this cascade culminates, activation of the protease thrombin occurs and soluble fibrinogen is converted into an insoluble polymerized fibrin network. Fibrin polymerization is critical for bleeding cessation and subsequent stages of wound healing. We develop a cooperative enzyme kinetics model for in vitro fibrin matrix polymerization capturing dynamic interactions among fibrinogen, thrombin, fibrin, and intermediate complexes. A tailored parameter subset selection technique is also developed to evaluate parameter identifiability for a representative data curve for fibrin accumulation in a short-duration in vitro polymerization experiment. Our approach is based on systematic analysis of eigenvalues and eigenvectors of the classical information matrix for simulations of accumulating fibrin matrix via optimization based on a least squares objective function. Results demonstrate robustness of our approach in that a significant reduction in objective function cost is achieved relative to a more ad hoc curve-fitting procedure. Capabilities of this approach to integrate non-overlapping subsets of the data to enhance the evaluation of parameter identifiability are also demonstrated. Unidentifiable reaction rate parameters are screened to determine whether individual reactions can be eliminated from the overall system while preserving the low objective cost. These findings demonstrate the high degree of information within a single fibrin accumulation curve, and a tailored model and parameter subset selection approach for improving optimization and reducing model complexity in the context of polymerization experiments.


Assuntos
Fibrina , Modelos Biológicos , Cicatrização , Animais , Células Cultivadas , Fibrina/metabolismo , Humanos , Cinética , Polimerização
15.
Biotechnol Appl Biochem ; 68(1): 148-156, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32125024

RESUMO

Mathematical modeling represents and predicts biological systems, explains underlying mechanisms, constituting one of the key focus points for fundamental and applied research to improve our understanding and to decrease costs. Organic acids are used in several industries such as monomers for bioplastics, food preservatives and additives, pharmaceuticals, and agriculture. Nonpetrochemical, sustainable production of organic acids is therefore of great interest. An important step in production of organic acids is the determination of growth and acid production dynamics, as the product itself may have direct and indirect inhibitory effects on the host's metabolism. The aim of this study it twofold: (i) to determine the parameters related to energetics of growth and production as growth ( K x ) and nongrowth associated (mATP ) maintenance constants and (ii) to set up and analyze an unstructured, black-box kinetic model to describe the dynamics of the growth and production of citric acid by Candida oleophila ATCC20177 using published batch fermentation data. K x and mATP were found to be 2.3 ± 1.7 and 5.25 ± 2.75, respectively, for the published P/O ratio of 1.45. The parameter sensitivities and correlations are determined using the Monte Carlo approach, and the final model is tested using chemostat data.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Cítrico/metabolismo , Modelos Biológicos , Saccharomycetales/crescimento & desenvolvimento , Cinética
16.
Ann Bot ; 126(4): 559-570, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32002551

RESUMO

BACKGROUND AND AIMS: Functional-structural plant (FSP) models provide insights into the complex interactions between plant architecture and underlying developmental mechanisms. However, parameter estimation of FSP models remains challenging. We therefore used pattern-oriented modelling (POM) to test whether parameterization of FSP models can be made more efficient, systematic and powerful. With POM, a set of weak patterns is used to determine uncertain parameter values, instead of measuring them in experiments or observations, which often is infeasible. METHODS: We used an existing FSP model of avocado (Persea americana 'Hass') and tested whether POM parameterization would converge to an existing manual parameterization. The model was run for 10 000 parameter sets and model outputs were compared with verification patterns. Each verification pattern served as a filter for rejecting unrealistic parameter sets. The model was then validated by running it with the surviving parameter sets that passed all filters and then comparing their pooled model outputs with additional validation patterns that were not used for parameterization. KEY RESULTS: POM calibration led to 22 surviving parameter sets. Within these sets, most individual parameters varied over a large range. One of the resulting sets was similar to the manually parameterized set. Using the entire suite of surviving parameter sets, the model successfully predicted all validation patterns. However, two of the surviving parameter sets could not make the model predict all validation patterns. CONCLUSIONS: Our findings suggest strong interactions among model parameters and their corresponding processes, respectively. Using all surviving parameter sets takes these interactions into account fully, thereby improving model performance regarding validation and model output uncertainty. We conclude that POM calibration allows FSP models to be developed in a timely manner without having to rely on field or laboratory experiments, or on cumbersome manual parameterization. POM also increases the predictive power of FSP models.


Assuntos
Persea , Calibragem , Modelos Estruturais , Incerteza
17.
Theor Biol Med Model ; 16(1): 1, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642334

RESUMO

BACKGROUND: Mathematical modeling is now frequently used in outbreak investigations to understand underlying mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of epidemics. However, the successful application of mathematical models to guide public health interventions lies in the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a simple computational method for assessing parameter identifiability in compartmental epidemic models. METHODS: We describe a parametric bootstrap approach to generate simulated data from dynamical systems to quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin with a low-complexity SEIR model and work through examples of increasingly more complex compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika. RESULTS: Overall, parameter identifiability issues are more likely to arise with more complex models (based on number of equations/states and parameters). As the number of parameters being jointly estimated increases, the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in most cases, R0 is often robust to parameter identifiability issues affecting individual parameters in the model. Despite large confidence intervals and higher mean squared error of other individual model parameters, R0 can still be estimated with precision and accuracy. CONCLUSIONS: Because public health policies can be influenced by results of mathematical modeling studies, it is important to conduct parameter identifiability analyses prior to fitting the models to available data and to report parameter estimates with quantified uncertainty. The method described is helpful in these regards and enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.


Assuntos
Doenças Transmissíveis/transmissão , Simulação por Computador , Modelos Biológicos , Animais , Doenças Transmissíveis/diagnóstico , Intervalos de Confiança , Culicidae/virologia , Suscetibilidade a Doenças , Hospitalização , Humanos , Zika virus/fisiologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
18.
Biol Cybern ; 113(1-2): 121-138, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30377765

RESUMO

Patient-specific models for diagnostics and treatment planning require reliable parameter estimation and model predictions. Mathematical models of physiological systems are often formulated as systems of nonlinear ordinary differential equations with many parameters and few options for measuring all state variables. Consequently, it can be difficult to determine which parameters can reliably be estimated from available data. This investigation highlights pitfalls associated with practical parameter identifiability and subset selection. The latter refer to the process associated with selecting a subset of parameters that can be identified uniquely by parameter estimation protocols. The methods will be demonstrated using five examples of increasing complexity, as well as with patient-specific model predicting arterial blood pressure. This study demonstrates that methods based on local sensitivities are preferable in terms of computational cost and model fit when good initial parameter values are available, but that global methods should be considered when initial parameter value is not known or poorly understood. For global sensitivity analysis, Morris screening provides results in terms of parameter sensitivity ranking at a much lower computational cost.


Assuntos
Algoritmos , Biologia Computacional , Modelos Biológicos , Modelos Teóricos , Circulação Sanguínea , Pressão Sanguínea , Humanos , Dinâmica não Linear
19.
Sensors (Basel) ; 19(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766463

RESUMO

By virtue of the advances in sensing techniques, finite element (FE) model updating (FEMU) using static and dynamic data has been recently employed to improve identification on updating parameters. Using heterogeneous data can provide useful information to improve parameter identifiability in FEMU. It is worth noting that the useful information from the heterogeneous data may be diluted in the conventional FEM framework. The conventional FEMU framework in previous studies have used heterogeneous data at once to compute residuals in the objective function, and they are condensed to be a scalar. In this implementation, it should be careful to formulate the objective function with proper weighting factors to consider the scale of measurement and relative significances. Otherwise, the information from heterogeneous data cannot be efficiently utilized. For FEMU of the bridge, parameter compensation may exist due to mutual dependence among updating parameters. This aggravates the parameter identifiability to make the results of the FEMU worse. To address the limitation of the conventional FEMU method, this study proposes a sequential framework for the FEMU of existing bridges. The proposed FEMU method uses two steps to utilize static and dynamic data in a sequential manner. By using them separately, the influence of the parameter compensation can be suppressed. The proposed FEMU method is verified through numerical and experimental study. Through these verifications, the limitation of the conventional FEMU method is investigated in terms of parameter identifiability and predictive performance. The proposed FEMU method shows much smaller variabilities in the updating parameters than the conventional one by providing the better predictions than those of the conventional one in calibration and validation data. Based on numerical and experimental study, the proposed FEMU method can improve the parameter identifiability using the heterogeneous data and it seems to be promising and efficient framework for FEMU of the existing bridge.

20.
NMR Biomed ; 31(10): e3848, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29106765

RESUMO

Although magnetic resonance elastography (MRE) has been used to estimate isotropic stiffness in the heart, myocardium is known to have anisotropic properties. This study investigated the determinability of global transversely isotropic material parameters using MRE and finite-element modeling (FEM). A FEM-based material parameter identification method, using a displacement-matching objective function, was evaluated in a gel phantom and simulations of a left ventricular (LV) geometry with a histology-derived fiber field. Material parameter estimation was performed in the presence of Gaussian noise. Parameter sweeps were analyzed and characteristics of the Hessian matrix at the optimal solution were used to evaluate the determinability of each constitutive parameter. Four out of five material stiffness parameters (Young's modulii E1 and E3 , shear modulus G13 and damping coefficient s), which describe a transversely isotropic linear elastic material, were well determined from the MRE displacement field using an iterative FEM inversion method. However, the remaining parameter, Poisson's ratio, was less identifiable. In conclusion, Young's modulii, shear modulii and damping can theoretically be well determined from MRE data, but Poisson's ratio is not as well determined and could be set to a reasonable value for biological tissue (close to 0.5).


Assuntos
Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética , Algoritmos , Anisotropia , Simulação por Computador , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA