Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chem Biodivers ; 20(5): e202300230, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36951446

RESUMO

Natural QPAs have anti-cancer property. The prodrugs of QPAs synthesized in our work with significantly improved solubility showed significantly stronger activity in animal experiments. Nevertheless, the mechanism of action of QPAs for treating cancers remains poorly understood. Here, a chemoproteomic study reveals that QPAs non-covalently and multivalently bind to PES1 in CRC cells, which impinges on the direct interaction between hTERT and hTR in the assembly of the telomerase complex, downregulates telomerase activity, and so promotes the aging process of CRC cells. This study is beneficial for us to conduct extensively the pharmaceutical chemistry research of QPAs.


Assuntos
Alcaloides de Berberina , Telomerase , Animais , Telomerase/metabolismo , RNA/química
2.
Eur J Nutr ; 61(5): 2775-2797, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35290477

RESUMO

PURPOSE: A possible link between pescadillo 1 (PES1) and lipid metabolism has been reported. However, whether PES1 is involved in the effects of daily caloric restriction (CR) and alternate-day fasting (ADF) interventions on diabetes-related lipid dysregulation is not elucidated. The current study aims are to explore the role of PES1 in effects of CR and ADF on diabetic mice and related mechanism. METHODS: Eight-week-old male db/db mice with type 2 diabetes mellitus (T2DM) were randomly divided into untreated T2DM, CR and ADF groups. McArdle hepatocytes were treated with 48 h high glucose (HG), 48 h normal glucose (NG) and 24 h HG plus 24 h NG, respectively. Pes1 siRNA and overexpression plasmid were, respectively, transfected into liver cells, and AAV9-Pes1-shRNA was injected into db/db mice. RESULTS: After 12-week interventions, the peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine palmitoyltransferase 1A (CPT1A) levels in livers of T2DM mice were enhanced by CR and ADF interventions with reductions of hepatic and plasma triglycerides. Unexpectedly, hepatic PES1 levels were downregulated by two interventions, consistent with the results of 48 h NG and 24 h HG plus 24 h NG-treated cells. Moreover, CPT1A level was upregulated in Pes1-siRNA-treated cells and AAV9-Pes1-shRNA injected murine livers, in contrast to Pes1 overexpression in cultured cells. Mechanistically, 48 h NG or 24 h HG plus 24 h NG treatment increased PPAR-α binding to Pes1 promoter, suppressing the PES1 expression, thereby lowering the PES1-mediated ubiquitination of CPT1A. CONCLUSION: The present study suggests that CR and ADF may improve lipid dysregulation in diabetic mice by downregulating hepatic PES1.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Restrição Calórica , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Jejum/fisiologia , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno/metabolismo , Triglicerídeos/metabolismo
3.
Environ Toxicol ; 37(3): 564-573, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34845814

RESUMO

Overexpression or activation of Yes-associated protein (YAP) is common in cancer cells. Thus, targeting YAP may be a strategy for cancer therapy. Licochalcone A (LicA) is a primary active compound of licorice root and is known to have medicinal effects, such as antioxidant, antibacterial, antiviral, and anticancer effects. However, the anticancer pharmacological mechanism of LicA has not been investigated in cholangiocarcinoma. In this study, we investigated the antiproliferative effect of LicA and the underlying molecular mechanism in HCCC-9810 and RBE human cholangiocarcinoma cells. Our experiments indicated that LicA suppressed the growth of cholangiocarcinoma cells through inactivation of the Hippo pathway. Pescadillo ribosomal biogenesis factor 1 (PES1) was notably upregulated and related to carcinogenesis. We also found that LicA suppressed the expression and nuclear localization of PES1, which was associated with the inhibition of YAP expression and transcriptional activity.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Proliferação de Células , Chalconas , Colangiocarcinoma/tratamento farmacológico , Regulação para Baixo , Via de Sinalização Hippo , Humanos , Proteínas de Ligação a RNA , Transdução de Sinais
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830469

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania spp. The improvement of existing treatments and the discovery of new drugs remain ones of the major goals in control and eradication of this disease. From the parasite genome, we have identified the homologue of the human oncogene PES1 in Leishmania major (LmjPES). It has been demonstrated that PES1 is involved in several processes such as ribosome biogenesis, cell proliferation and genetic transcription. Our phylogenetic studies showed that LmjPES encodes a highly conserved protein containing three main domains: PES N-terminus (shared with proteins involved in ribosomal biogenesis), BRCT (found in proteins related to DNA repair processes) and MAEBL-type domain (C-terminus, related to erythrocyte invasion in apicomplexan). This gene showed its highest expression level in metacyclic promastigotes, the infective forms; by fluorescence microscopy assay, we demonstrated the nuclear localization of LmjPES protein. After generating mutant parasites overexpressing LmjPES, we observed that these clones displayed a dramatic increase in the ratio of cell infection within macrophages. Furthermore, BALB/c mice infected with these transgenic parasites exhibited higher footpad inflammation compared to those inoculated with non-overexpressing parasites.


Assuntos
Leishmania major/genética , Leishmaniose/genética , Doenças Parasitárias/genética , Proteínas/genética , Animais , Sequência Conservada/genética , Humanos , Leishmania major/patogenicidade , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Doenças Parasitárias/parasitologia , Proteínas de Ligação a RNA/genética
5.
J Transl Med ; 18(1): 209, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448371

RESUMO

BACKGROUND: As a nucleolar protein associated with ribosome biogenesis, pescadillo homolog 1 (PES1) has been reported to participate in the development of many cancers. However, its role in prostate cancer is not clearly defined. Therefore, the aim of this study is to explore the effects and the specific mechanism of PES1 in prostate cancer. METHODS: A microarray-based analysis was performed to analyze differentially expressed genes (DEGs) between prostate cancer and normal samples. Next, the interaction between PES1 and microRNA-1271 (miR-1271) was investigated using bioinformatics analysis in combination with dual-luciferase reporter gene assay. The expression of miR-1271 in prostate cancer cells and tissues was determined using RT-qPCR. Its effects on downstream estrogen receptor ß (ERß) signaling pathway were further examined. Moreover, we analyzed whether miR-1271 affects proliferation, apoptosis, migration and invasion of prostate cancer cells by EdU assay, flow cytometry, and Transwell assay. Lastly, a prostate cancer mouse model was conducted to measure their roles in the tumor growth. RESULTS: PES1 was identified as a prostate cancer-related DEG and found to be upregulated in prostate cancer. miR-1271, which was poorly expressed in both cells and tissues of prostate cancer, can specifically bind to PES1. Additionally, overexpression of miR-1271 activated the ERß signaling pathway. Overexpression of miR-1271 or depletion of PES1 inhibited prostate cancer cell proliferation, migration and invasion, promoted apoptosis in vitro and suppressed tumor growth in vivo. CONCLUSIONS: Taken together, overexpression of miR-1271 downregulates PES1 to activate the ERß signaling pathway, leading to the delayed prostate cancer development. Our data highlights the potential of miR-1271 as a novel biomarker for the treatment of prostate cancer.


Assuntos
Receptor beta de Estrogênio , MicroRNAs , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , MicroRNAs/genética , Neoplasias da Próstata/genética , Proteínas de Ligação a RNA
6.
IUBMB Life ; 65(12): 1017-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24376209

RESUMO

Estrogen exhibits mitogenic activity in early ovarian carcinogenesis and plays an important role in ovarian tumorigenesis. Due to the increased expression of ERα and decreased expression of the ERß, the ratio of ERα and ERß is markedly increased in ovarian cancer. We have recently reported that PES1 regulates the balance of ERα and ERß at the post-transcriptional level in breast cancer. Here, we report that PES1 inversely regulates the expression of ERα and ERß in addition to their transcriptional activities in epithelial ovarian cancer. We found that the ablation of PES1 resulted in the significant downregulation of ERα and estrogen-responsive genes such as cylin D1, HIF-1α and VEGF and the up-regulation of ERß and p21WAF1. Cell proliferation in both tested ovarian cell lines was markedly inhibited and cells were arrested in G2 after PES1 was ablated. Further analysis of clinical samples showed that expression of PES1 correlated positively with ERα expression and negatively with ERß expression. Our results demonstrate that PES1 may play important role in the progression of ovarian cancer by inversely regulating the ERα and ERß expression. PES1 may be a new target for ovarian cancer therapy.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/metabolismo , Proteínas/fisiologia , Estudos de Casos e Controles , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Neoplasias Ovarianas/genética , Ovário/metabolismo , Ovário/patologia , Proteínas de Ligação a RNA , Transcrição Gênica
7.
Life Sci ; 219: 182-189, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30630006

RESUMO

AIM: We investigated the potential role of pescadillo ribosomal biogenesis factor 1 (PES1) in the development of hepatocellular carcinoma (HCC). MATERIAL AND METHODS: One hundred and thirty-four patients with hepatocellular carcinoma were chosen to evaluate the association between the expression of PES1 and survival, clinical characteristics of these patients. Western blotting, real-time PCR, immunohistochemistry, CCK-8 assay, colony formation and subcutaneous tumors in nude mice were conducted. KEY FINDINGS: We found that PES1 was commonly upregulated in HCC tissues and cells. Immunohistochemical analysis of 134 paraffin-embedded archived HCC tissues showed that the protein expression level of PES1 was positively correlated with clinical characteristics and reduced the survival time of HCC patients. Univariate and multivariate analysis revealed that PES1 expression may be an independent prognostic indicator of poorer overall survival in HCC patients. Furthermore, silencing of endogenous PES1 significantly inhibited the proliferation and tumorigenicity of SMMC 7721 and HepG2 cells in vitro as well as in vivo in nude mice. Finally, we found that PES1 affected cell proliferation by regulating the PI3K/AKT/GSK3ß/cyclinD1 signaling pathway. SIGNIFICANCE: Our data suggest that PES1 may promote proliferation and tumorigenicity, and potentially representing a novel prognostic marker for overall survival in HCC. CORE TIP: We report that pescadillo ribosomal biogenesis factor 1 (PES1) plays an oncogenic role in hepatocellular carcinoma, which was commonly upregulated in hepatocellular carcinoma tissues and cells. Immunostaining analysis found that the protein expression level of PES1 was positively correlated with clinical characteristics and reduced survival time of hepatocellular carcinoma patients. Multivariate analysis revealed that PES1 expression might be an independent prognostic indicator of survival in hepatocellular carcinoma patients. Furthermore, PES1 knockdown inhibited the proliferation and tumorigenesis in hepatocellular carcinoma cell lines. Additionally, we found that PES1 is involved in the cell proliferation by regulating the AKT/GSK3ß/cyclinD1 signaling pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Proteínas/fisiologia , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase em Tempo Real
8.
Int J Biochem Cell Biol ; 104: 1-8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30172011

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the mechanism underlying the tumorigenesis of HCC is still unclear. Improper recruitment of Pescadillo homologue 1 (PES1) can lead to tumorigenesis in multiple cancer types, such as gastric cancer and colon cancer. Here, we reported that PES1 was upregulated and associated with a poor prognosis in HCC specimens. Next, we found that PES1 promoted the growth of HCC in vivo and in vitro. Furthermore, we showed that the knockdown of PES1 decreased glycolysis via altering the gene expression of GLUT1, PKM2, ENO1, FBP1, and PCK1, which are related to glucose metabolism in HCC cells. Moreover, we demonstrated that PES1 is regulated by bromodomain-containing protein 4 (BRD4) and is partially responsible for modulating the antitumor effect of BET inhibitors in HCC. Taken together, our results suggest that PES1 plays an important role in promoting the proliferation of human liver cancer cells, suggesting that PES1 may be an ideal molecular target for HCC therapy.


Assuntos
Carcinoma Hepatocelular/patologia , Glicólise , Neoplasias Hepáticas/patologia , Proteínas Nucleares/metabolismo , Proteínas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Prognóstico , Proteínas de Ligação a RNA , Regulação para Cima
9.
Plant Sci ; 229: 53-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443833

RESUMO

The Pescadillo gene is highly conserved from yeasts to human and has been shown to impact on both the cell cycle and on ribosome biogenesis. However, the biological function and transcriptional regulation of the plant orthologs remain unclear. In the present study, we have implemented a combination of molecular and genetic approaches, in order to characterize the Arabidopsis thaliana pescadillo ortholog (AtPES) and its role in root development. The RNAi transgenic lines displayed severely compromised meristem structures and a reduction of the primary root length of up to 70%. The correct pattern of the cell files is distorted, whereas in the root elongation and differentiation zone the epidermal and cortex cells appear abnormally enlarged. Yeast two hybrid and BiFC experiments confirmed that AtPES interacts physically with AtPEIP1 and AtPEIP2, the orthologs of the murine Bop1 and WDR12. Promoter deletion analysis revealed that AtPES expression depends on a number of transcription factor binding sites, with the TELO-box being a crucial site for regulating its accurate tissue-specific manifestation. Our results indicate that AtPES is firmly regulated at the transcriptional level and that the corresponding protein plays a role in root developmental processes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Transcrição Gênica , Animais , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Glucuronidase/metabolismo , Camundongos , Dados de Sequência Molecular , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA , Plântula/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA