Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(47)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37579745

RESUMO

Oxygen doping strategy is one of the most effective methods to improve the electrochemical properties of nickel-cobalt phosphide (NiCoP)-based capacitors by adjusting its inherent electronic structure. In this paper, O-doped NiCoP microspheres derived from porous nanostructured nickel metal-organic frameworks (Ni-MOFs) were constructed through solvothermal method followed by phosphorization treatment. The O-doping concentration has a siginificant influence on the rate performance and cycle stability. The optimized O-doped NiCoP electrode material shows a specific capacitance of 632.4 F-g-1at 1 A-g-1and a high retention rate of 56.9% at 20 A g-1. The corresponding NiCoP-based asymmetric supercapacitor exhibits a high energy density of 30.1 Wh kg-1when the power density is 800.9 W kg-1, and can still maintain 82.1% of the initial capacity after 10 000 cycles at 5 A g-1.

2.
Small ; 18(8): e2106161, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34897999

RESUMO

3D porous Ni is fabricated via an easily scalable electroless plating method using a dynamic template formed through in-situ hydrogen bubbles. The pore size in the range of several micrometers is controllable through adjusting the Ni2+ depositing rate and hydrogen bubbles releasing rate. The Ni3 S2 nanosheet arrays anode is then grown on the unique 3D porous Ni current collector followed by subsequent surface phosphorization. The tremendous interconnected pores and rich voids between the Ni3 S2 nanosheet arrays cannot only provide rapid transferring channels for Na+ , but also accommodate volumetric changes of the Ni3 S2 electrode during cycling, guaranteeing the integrity of the active material. In addition, the surface phosphorized layer enhances the electronic conductivity through providing an electron transport highway along the 3D Ni3 S2 , NiP2 layer, and 3D porous Ni current collector, and simultaneously stabilizes the electrode/electrolyte interphase as a protecting layer. Because of these merits, the phosphorized 3D porous Ni3 S2 (3D P-Ni3 S2 ) electrode is capable of delivering an ultra-stable capacity of 387.5 mAh g-1 at 0.1 A g-1 , and a high capacity retention of 85.3% even at a high current density of 1.6 A g-1 .

3.
Chemistry ; 28(25): e202200212, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35266207

RESUMO

Thiolates endow metal nanoclusters with stability while sometimes inhibit the catalytic activity due to the strong M-S interaction (M: metal atom). To improve the catalytic activity and keep the stability to some extent, one strategy is the partial phosphorization of thiolated metal nanoclusters. This is demonstrated by successful partial phosphorization of Au23 (SC6 H11 )16 and by revealing that the products Au22 (SC6 H11 )14 (PPh3 )2 and Au22 (SC6 H11 )12 (PPh3 )4 , with varied degree of phosphorization, both show excellent activity in the photocatalytic oxidation of thioanisole without notable reduction of stability. Furthermore, Au22 (SC6 H11 )12 (PPh3 )4 exhibits better photoluminescence performance than the mother nanocluster Au23 (SC6 H11 )16 , indicating that partial phosphorization can also improve some other performance(s) except for the catalytic performance. The intermediates Au22-x Cux (SC6 H11 )12 (PPh3 )4 (x=1, 2) in the transformation from Au23 (SC6 H11 )16 (Au22 (SC6 H11 )14 (PPh3 )2 ) to Au22 (SC6 H11 )12 (PPh3 )4 were captured and identified by mass spectrometry and single crystal X-ray diffraction, which throws light on the understanding of the non-alloyed anti-galvanic reaction.

4.
Small ; 17(4): e2007062, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33354902

RESUMO

Porous carbon and metal oxides/sulfides prepared by using metal-organic frameworks (MOFs) as the precursors have been widely applied to the realm of supercapacitors. However, employing MOF-derived metal phosphides as positive and negative electrode materials for supercapacitors has scarcely been reported thus far. Herein, two types of MOFs are used as the precursors to prepare CoP and FeP4 nanocubes through a two-step controllable heat treatment process. Due to the advantages of composition and structure, the specific capacitances of FeP4 and CoP nanocubes reach 345 and 600 F g-1 at the current density of 1 A g-1 , respectively. Moreover, a quasi-solid-state asymmetric supercapacitor is assembled based on charge matching principle by employing CoP and FeP4 nanocubes as the positive and negative electrodes, respectively, which exhibits a high energy density of 46.38 Wh kg-1 at the power density of 695 W kg-1 . Furthermore, a solar-charging power system is assembled by combining the quasi-solid-state asymmetric supercapacitor and monocrystalline silicon plates, substantiating that the device can power the toy electric fan. This work paves a practical way toward the rational design of quasi-solid-state asymmetry supercapacitors systems affording favorable energy density and long lifespan.

5.
Small ; 17(21): e2100353, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33861511

RESUMO

Metal-organic framework (MOF)-derived heterostructures possessing the merits of each component are thought to display the enhanced energy storage performance due to their synergistic effect. Herein, a functional heterostructure (NiCoP-MOF) composed of nickel/cobalt-MOF (NiCo-MOF) and phosphide (NiCoP) is designed and fabricated via the localized phosphorization of unusual lamellar brick-stacked NiCo-MOF assemblies obtained by a hydrothermal method. The experimental and computational analyses reveal that such-fabricated heterostructures possess the modulated electronic structure, abundant active sites, and hybrid crystalline feature, which is kinetically beneficial for fast electron/ion transport to enhance the charge storage capability. Examined as the supercapacitor electrode, the obtained NiCoP-MOF compared to the NiCo-MOF delivers a high capacity of 728 C g-1 (1.82 C cm-2 ) at 1 A g-1 with a high capacity retention of 430 C g-1 (1.08 C cm-2 ) when increasing the current density to 20 A g-1 . Importantly, the assembled solid-state NiCoP-MOF-based hybrid supercapacitor displays superior properties regarding the capacity (226.3 C g-1 ), energy density (50.3 Wh kg-1 ), and durability (≈100% capacity retention over 10 000 cycles). This in situ heterogenization approach sheds light on the electronic structure modulation while maintaining the well-defined porosity and morphology, holding promise for designing MOF-based derivatives for high performance energy storage devices.

6.
Small ; 17(35): e2101617, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34235844

RESUMO

Efficient improvement of the energy density and overall electrochemical performance of fiber-shaped asymmetric supercapacitors (FASCs) for practical applications in portable and wearable electronics requires highly electrochemically active materials and a rational design. Herein, two-step phosphorization (TSP) processes are performed to directly grow 3D well-aligned NiCoP@NiCoP (NCP@NCP TSP) nanoflake arrays (NFAs) on carbon nanotube fibers (CNTFs). Profiting from the metallic characteristics and excellent electrochemical performance of NiCoP and the hierarchical design of the core-shell heterostructure, the NCP@NCP TSP NFAs/CNTF hybrid electrode exhibits significantly improved electrochemical performance. The as-fabricated NCP@NCP TSP NFAs/CNTF electrode possesses an ultrahigh areal capacitance of 10 035 mF cm-2 at a current density of 1 mA cm-2 , with excellent rate capability and cycling stability. Furthermore, an FASC device with a maximum operating voltage of 1.6 V is assembled by adopting NCP@NCP TSP NFAs/CNTF as a positive electrode, hierarchical TiN@VN core-shell heterostructure nanowire arrays (NWAs)/CNTF as negative electrode, and KOH-PVA as a gel electrolyte. The FASC device exhibits a high areal capacitance of 430.4 mF cm-2 and an ultrahigh energy density of 51.02 mWh cm-3 . Thus, the rationally designed NiCoP@NiCoP electrode is a promising candidate for incorporation into next-generation wearable and portable energy-storage devices.

7.
Nanotechnology ; 32(43)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34284357

RESUMO

Design and develop of cost-effective non-enzymatic electrode materials is of great importance for next generation of glucose sensors. In this work, we report a high-performance self-supporting electrode fabricated via direct epitaxial growth of nickel phosphide on Ni foam (Ni2P/NF) for nonenzymatic glucose sensors in alkaline solution. Under the optimal conditions, the uniform Ni2P nanosheets could be obtained with an average thickness of 80 nm, which provides sufficient active sites for glucose molecules. As a consequence, the Ni2P/NF electrode displays superior electrochemistry performances with a high sensitivity of 6375.1µA mM-1cm-2, a quick response about 1 s, a low detection limit of 0.14µM (S/N = 3), and good selectivity and specificity. Benefit from the strong interaction between Ni2P and NF, the Ni2P/NF electrode is also highly stable for long-term applications. Furthermore, the Ni2P/NF electrode is capable of analyzing glucose in human blood serum with satisfactory results, indicating that the Ni2P/NF is a potential candidate for glucose sensing in real life.


Assuntos
Eletrodos , Glucose/análise , Nanoestruturas/química , Níquel/química , Glicemia/análise , Eletroquímica , Humanos
8.
Angew Chem Int Ed Engl ; 60(42): 22885-22891, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34351663

RESUMO

Exploring earth-abundant electrocatalysts with excellent activity, robust stability, and multiple functions is crucial for electrolytic hydrogen generation. Porous phosphorized CoNi2 S4 yolk-shell spheres (P-CoNi2 S4 YSSs) were rationally designed and synthesized by a combined hydrothermal sulfidation and gas-phase phosphorization strategy. Benefiting from the strengthened Ni3+ /Ni2+ couple, enhanced electronic conductivity, and hollow structure, the P-CoNi2 S4 YSSs exhibit excellent activity and durability towards hydrogen/oxygen evolution and urea oxidation reactions in alkaline solution, affording low potentials of -0.135 V, 1.512 V, and 1.306 V (versus reversible hydrogen electrode) at 10 mA cm-2 , respectively. Remarkably, when used as the anode and cathode simultaneously, the P-CoNi2 S4 catalyst merely requires a cell voltage of 1.544 V in water splitting and 1.402 V in urea electrolysis to attain 10 mA cm-2 with excellent durability for 100 h, outperforming most of the reported nickel-based sulfides and even noble-metal-based electrocatalysts. This work promotes the application of sulfides in electrochemical hydrogen production and provides a feasible approach for urea-rich wastewater treatment.

9.
Small ; 16(15): e1900550, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30908837

RESUMO

The development of low-cost and highly efficient electrocatalysts via an eco-friendly synthetic method is of great significance for future renewable energy storage and conversion systems. Herein, cobalt phosphides confined in porous P-doped carbon materials (Co-P@PC) are fabricated by calcinating the cobalt-phosphonate complex formed between 1-hydroxyethylidenediphosphonic acid and Co(NO3 )2 in alkaline solution. The P-containing ligand in the complex acts as the carbon source as well as in situ phosphorizing agent for the formation of cobalt phosphides and doping P element into carbon material upon calcination. The Co-P@PC exhibits high activity for all-pH hydrogen evolution reaction (overpotentials of 72, 85, and 76 mV in acidic, neutral, and alkaline solutions at the current density of 10 mA cm-2 ) and oxygen evolution reaction in alkaline solution (an overpotential of 280 mV at the current density of 10 mA cm-2 ). The alkaline electrolyzer assembled from the Co-P@PC electrodes delivers the current density of 10 mA cm-2 at the voltage of 1.60 V with a durability of 60 h. The excellent activity and long-term stability of the Co-P@PC derives from the synergistic effect between the active cobalt phosphides and the porous P-doped carbon matrix.

10.
Small ; 16(24): e2000755, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374506

RESUMO

Utilization of microbes as the carbon source and structural template to fabricate porous carbon has incentivized great interests owing to their diverse micromorphology and intricate intracellular structure, apart from the obvious benefit of "turning waste into wealth." Challenges remain to preserve the biological structure through the harsh and laborious post-synthetic treatments, and tailor the functionality as desired. Herein, Escherichia coli is directly coated with metal-organic frameworks (MOFs) through in situ assembly to fabricate N, P co-doped porous carbon capsules expressing self-phosphorized metal phosphides. While the MOF coating serves as an armoring layer for facilitating the morphology inheritance from the bio-templates and provides metal sources for generating extra porosity and electrochemically active sites, the P-rich phospholipids and N-rich proteins from the plasma membrane enable carbon matrix doping and further yield metal phosphides. These unique structural and compositional features endow the carbon capsules with great capabilities in suppressing polysulfide shuttling and catalyzing reversible oxygen conversion, ultimately leading to the superb performance of lithium-sulfur batteries and zinc-air batteries. Combining the bio-templating strategy with hierarchical MOF assembly, this work opens a new avenue for the fabrication of highly porous and functional carbon for advanced energy applications.

11.
Chemistry ; 26(65): 14903-14911, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32476161

RESUMO

To solve energy-related environmental problems and the energy crisis, efficient electrochemical materials have been developed as alternative energy storage and conversion systems. Abundant transition metals and their sulfides are attractive electrochemical materials. Herein, we report an efficient phosphorization strategy, which improves the overall electrochemical performance of metal sulfides. In detail, CoS hexagonal bipyramids were synthesized through simple calcination combined with in situ sulfurization of a cobalt-based metal-organic framework template, and then phosphate ion-functionalized CoS (P-CoS) was prepared through a phosphorization reaction. P-CoS exhibited outstanding electrochemical activity as both supercapacitor electrode and oxygen evolution reaction (OER) catalyst. Supercapacitors based on CoS and P-CoS as the electrodes had high specific capacitances of 304 and 442 F g-1 , respectively, and remained stable for over 10 000 cycles at 5 A g-1 . For OER, P-CoS showed a current density of 10 mA cm-2 at an overpotential of 340 mV, with a small Tafel slope. In conclusion, functionalizing CoS with phosphate ions is a promising method for enhancing chemical reactivity and accelerating ion and electron transfer.

12.
J Colloid Interface Sci ; 660: 792-799, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277836

RESUMO

Non-precious metals have shown attractive catalytic prospects in hydrogen production from ammonia borane hydrolysis. However, the sluggish reaction kinetics in the hydrolysis process remains a challenge. Herein, P-bridged Fe-X-Co coupled sites in hollow carbon spheres (Fe-CoP@C) has been synthesized through in situ template solvothermal and subsequent surface-phosphorization. Benefiting from the optimized electronic structure induced by Fe doping to enhance the specific activity of Co sites, bimetallic synergy and hollow structure, the as-prepared Fe-CoP@C exhibits superior performances with a turnover frequency (TOF) of 183.5 min-1, and stability of over 5 cycles for ammonia borane hydrolysis, comparable to noble metal catalysts. Theoretical calculations reveal that the P-bridged Fe-X-Co coupled sites on the Fe-CoP@C catalyst surfaces is beneficial to adsorb reactant molecules and reduce their reaction barrier. This strategy of constructing hollow P-bridged bimetallic coupled sites may open new avenues for non-precious metal catalysis.

13.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930248

RESUMO

The sluggish kinetics of oxygen reduction reactions (ORRs) require considerable Pd in the cathode, hindering the widespread of alkaline fuel cells (AFCs). By alloying Pd with transition metals, the oxygen reduction reaction's catalytic properties can be substantially enhanced. Nevertheless, the utilization of Pd-transition metal alloys in fuel cells is significantly constrained by their inadequate long-term durability due to the propensity of transition metals to leach. In this study, a nonmetallic doping strategy was devised and implemented to produce a Pd catalyst doped with P that exhibited exceptional durability towards ORRs. Pd3P0.95 with an average size of 6.41 nm was synthesized by the heat-treatment phosphorization of Pd nanoparticles followed by acid etching. After P-doping, the size of the Pd nanoparticles increased from 5.37 nm to 6.41 nm, and the initial mass activity (MA) of Pd3P0.95/NC reached 0.175 A mgPd-1 at 0.9 V, slightly lower than that of Pd/C. However, after 40,000 cycles of accelerated durability testing, instead of decreasing, the MA of Pd3P0.95/NC increased by 6.3% while the MA loss of Pd/C was 38.3%. The durability was primarily ascribed to the electronic structure effect and the aggregation resistance of the Pd nanoparticles. This research also establishes a foundation for the development of Pd-based ORR catalysts and offers a direction for the future advancement of catalysts designed for practical applications in AFCs.

14.
Nanomaterials (Basel) ; 14(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39269045

RESUMO

Developing effective and long-lasting electrocatalysts for oxygen evolution reaction (OER) is critical for increasing sustainable hydrogen production. This paper describes the production and characterization of CoFeP nanoparticles (CFP NPs) as high-performance electrocatalysts for OER. The CFP NPs were produced using a simple hydrothermal technique followed by phosphorization, yielding an amorphous/crystalline composite structure with improved electrochemical characteristics. Our results reveal that CFP NPs have a surprisingly low overpotential of 284 mV at a current density of 100 mA cm-2, greatly exceeding the precursor CoFe oxide/hydroxide (CFO NPs) and the commercial RuO2 catalyst. Furthermore, CFP NPs demonstrate exceptional stability, retaining a constant performance after 70 h of continuous operation. Post-OER characterization analysis revealed transformations in the catalyst, including the formation of cobalt-iron oxides/oxyhydroxides. Despite these changes, CFP NPs showed superior long-term stability compared to native metal oxides/oxyhydroxides, likely due to enhanced surface roughness and increased active sites. This study proposes a viable strategy for designing low-cost, non-precious metal-based OER catalysts, which will help advance sustainable energy technology.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38666423

RESUMO

Although significant efforts have been made in the past few decades, the development of affordable, durable, and effective electrocatalysts for direct methanol fuel cells (DMFCs) remains a formidable challenge. Herein, we present a facile and efficient phosphorization approach for synthesizing PtP2 intermetallic nanocrystals and utilize them as electrocatalysts in the methanol oxidation reaction (MOR). Impressively, the synthesized PtP2 nanocatalysts exhibit a mass activity of 2.14 mA µg-1 and a specific activity of 6.28 mA cm-2, which are 5.1 and 9.5 times higher than those achieved by the current state-of-the-art commercial Pt/C catalyst, respectively. Moreover, the PtP2 nanocatalysts demonstrate improved stability toward acidic MOR by retaining 92.1% of its initial mass activity after undergoing 5000 potential cycles, far surpassing that of the commercial Pt/C (38%). Further DMFC tests present a 2.7 times higher power density than that of the commercial Pt/C, underscoring their potential for application in methanol fuel cells. Density functional theory calculations suggest that the accelerated MOR kinetics and improved CO tolerance on PtP2 can be attributed to the attenuated binding strength of CO intermediates and the enhanced stability due to strong Pt-P interaction. To our knowledge, this is the first report identifying the MOR performance on PtP2 intermetallic nanocrystals, highlighting their potential as highly active and stable nanocatalysts for DMFCs.

16.
Micromachines (Basel) ; 15(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258224

RESUMO

In this study, the successful synthesis of bimetallic nickel/cobalt phosphide nanosheets (Ni-Co-P NSs) via the hydrothermal method and the subsequent high-temperature phosphorization process were both confirmed. Ni-Co-P NSs exhibited excellent electrocatalytic activity for the electrochemical non-enzymatic DA sensing. The surface morphologies and physicochemical properties of Ni-Co-P NSs were characterized by atomic force microscopy (AFM), field-emission scanning (FESEM), field-emission transmission electron microscopy (FETEM), and X-ray diffraction (XRD). Further, the electrochemical performance was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The metallic nature of phosphide and the synergistic effect of Ni/Co atoms in Ni-Co-P NSs provided abundant catalytic active sites for the electrochemical redox reaction of DA, which exhibited a remarkable consequence with a wide linear range from 0.3~50 µM, a high sensitivity of 2.033 µA µM-1 cm-2, a low limit of detection of 0.016 µM, and anti-interference ability. As a result, the proposed Ni-Co-P NSs can be considered an ideal electrode material for the electrochemical non-enzymatic DA sensing.

17.
ACS Appl Mater Interfaces ; 16(13): 16309-16316, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507679

RESUMO

Constructing highly active and noble metal-free electrocatalysts is significant for the anodic oxygen evolution reaction (OER). Herein, uniform carbon-coated CoP nanospheres (CoP/C) are developed by a direct impregnation coupling phosphorization approach. Importantly, CoP/C only takes a small overpotential of 230 mV at the current density of 10 mA cm-2 and displays a Tafel slope of 56.87 mV dec-1. Furthermore, the intrinsic activity of CoP/C is 21.44 times better than that of commercial RuO2 under an overpotential of 260 mV. In situ Raman spectroscopy studies revealed that a large number of generated Co-O and Co-OH species could facilitate the *OH adsorption, effectively accelerating the reaction kinetics. Meanwhile, the carbon shell with a large number of mesoporous pores acts as the chainmail of CoP, which could improve the active surface area of the catalyst and prevent the Co sites from oxidative dissolution. This work provides a facile and effective reference for the development of highly active and stable OER catalysts.

18.
J Colloid Interface Sci ; 630(Pt A): 70-80, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215825

RESUMO

Rational design and synthesis of multifunctional electrocatalysts with high electrochemical activity and low cost are significantly important for new-generation lithium-sulfur (Li-S) batteries. Herein, N-doped FeP nanospheres decorated N doped carbon matrix is successfully synthesized by facile one-pot pyrolysis and in-situ phosphorization technique to mitigate the conversion kinetics and suppress the shuttle effect. The large specific surface area with mesopores can incorporate up to 81.5% sulfur, with the conductive carbon and nitrogen co-matrix providing Li+/e- passage and fastening the redox kinetics. The remarkable adsorption properties and the electrocatalytic activity through physical confinement and chemical immobilization is thoroughly verified. Consequently, the FeP/CN@S deliver a high reversible capacity of 1183 mAh g-1 at 0.1C compared to Co/P/CN@S (961 mAh g-1); whereas, at 1C, a negligible decay rate of 0.04% is observed for 1000 cycles, possessing outstanding cycling stability and rate capability. Hence, the cost-effective in-situ phosphorization strategy to synthesize FeP/CN@S as an efficient nanoreactor is constructive to be applied in Li-S batteries.

19.
J Colloid Interface Sci ; 637: 76-84, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36682120

RESUMO

Electronic regulation via interface engineering is recognized as an attractive strategy for boosting electrocatalytic activity. In this work, a self-supported heterostructure electrocatalyst is explored by a feasible hydrothermal-pyrolysis strategy, in which Ni2P nanoparticles are anchored on NiMoP2 nanosheet arrays grown on carbon cloth (Ni2P/NiMoP2/CC). Benefitting from the nanosheet array architecture and the synergy effect between the Ni2P and NiMoP2, the as-prepared Ni2P/NiMoP2/CC manifests highly efficient activity and stability toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculations further indicates that the heterointerface in Ni2P/NiMoP2/CC enable optimized interface electron structure and reduce the activation barriers for intermediates, improving the intrinsic electrocatalytic activity. Remarkably, the Ni2P/NiMoP2/CC||Ni2P/NiMoP2/CC electrolyzer affords 10 mA cm-2 at a low voltage of 1.59 V, outperforming its monometallic phosphides counterparts and most of transition metal-based bifunctional electrocatalysts. The electrolyser was powered by a solar cell to produce H2 and O2 simultaneously, indicating its potential application in solar-to-hydrogen conversion.

20.
ACS Appl Mater Interfaces ; 15(19): 23217-23225, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37146292

RESUMO

Cobalt oxide (Co3O4) is regarded as the anode material for lithium-ion batteries (LIBs) with great research value owing to its environmental friendliness and exceptional theoretical capacity. However, the low intrinsic conductivity, poor electrochemical kinetics, and unsatisfactory cycling performance severely limit its practical applications in LIBs. The construction of a self-standing electrode with heterostructure by introducing a highly conductive cobalt-based compound is an effective strategy to solve the above issues. Herein, Co3O4/CoP nanoflake arrays (NFAs) with heterostructure are constructed skillfully directly grown on carbon cloth (CC) by in situ phosphorization as an anode for LIBs. Density functional theory simulation results demonstrate that the construction of heterostructure greatly increases the electronic conductivity and Li ion adsorption energy. The Co3O4/CoP NFAs/CC exhibited an extraordinary capacity (1490.7 mA h g-l at 0.1 A g-l) and excellent performance at high current density (769.1 mA h g-l at 2.0 A g-l), as well as remarkable cyclic stability (451.3 mA h g-l after 300 cycles with a 58.7% capacity retention rate). The reasonable construction of heterostructure can promote the interfacial ion transport, significantly enhance the adsorption energy of lithium ions, improve the conductivity of Co3O4 electrode material, promote the partial charge transfer throughout the charge and discharge cycles, and enhance the overall electrochemical performance of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA