Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

2.
Small ; 20(11): e2306554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919862

RESUMO

Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de-intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic-scale reactive molecular dynamics simulations. By PEEM, de-intercalation "windows" (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de- and re-intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s-1 ± 0.2 nm s.-1 In contrast, the de-intercalation of Ga is irreversible with faster kinetics that are influenced by the non-circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de-intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation.

3.
Nanotechnology ; 35(16)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38211321

RESUMO

We investigate the magnetic interlayer coupling and domain structure of ultra-thin ferromagnetic (FM) cobalt (Co) layers embedded between a graphene (G) layer and a platinum (Pt) layer on a silicon carbide (SiC) substrate (G/Co/Pt on SiC). Experimentally, a combination of x-ray photoemission electron microscopy with x-ray magnetic circular dichroism has been carried out at the Co L-edge. Furthermore, structural and chemical properties of the system have been investigated using low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS).In situLEED patterns revealed the crystalline structure of each layer within the system. Moreover, XPS confirmed the presence of quasi-freestanding graphene, the absence of cobalt silicide, and the appearance of two silicon carbide surface components due to Pt intercalation. Thus, the Pt-layer effectively functions as a diffusion barrier. The magnetic structure of the system was unaffected by the substrate's step structure. Furthermore, numerous vortices and anti-vortices were found in all samples, distributed all over the surfaces, indicating Dzyaloshinskii-Moriya interaction. Only regions with a locally increased Co-layer thickness showed no vortices. Moreover, unlike in similar systems, the magnetization was predominantly in-plane, so no perpendicular magnetic anisotropy was found.

4.
Nano Lett ; 23(20): 9547-9554, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816225

RESUMO

Exploring ultrafast carrier dynamics is crucial for the materials' fundamental properties and device design. In this work, we employ time- and energy-resolved photoemission electron microscopy with tunable pump wavelengths from visible to near-infrared to reveal the ultrafast carrier dynamics of the elemental semiconductor tellurium. We find that two discrete sub-bands around the Γ point of the conduction band are involved in excited-state electron ultrafast relaxation and reveal that hot electrons first go through ultrafast intra sub-band cooling on a time scale of about 0.3 ps and then transfer from the higher sub-band to the lower one on a time scale of approximately 1 ps. Additionally, theoretical calculations reveal that the lower one has flat-band characteristics, possessing a large density of states and a long electron lifetime. Our work demonstrates that TR- and ER-PEEM with broad tunable pump wavelengths are powerful techniques in revealing the details of ultrafast carrier dynamics in time and energy domains.

5.
Nano Lett ; 23(7): 2792-2799, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010816

RESUMO

Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs' electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.

6.
Small ; 19(10): e2206322, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650978

RESUMO

The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal-organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation. The "one spot" combination, containing a chemically sensitive morphology and spectroscopic data, is examined via photoemission electron microscopy in the X-ray absorption near-edge structure spectroscopy (XANES) mode. The observed spectromicroscopy results showed that the entire SiNW surface is covered with a tin(IV) oxide layer and traces of tin(II) oxide and metallic tin phases. The deviation from stoichiometric SnO2 leads to the formation of the density of states sub-band in the atop tin oxide layer bandgap close to the bottom of the SnO2 conduction band. These observations open up the possibility of the precise surface electronic structures estimation using photo-electron microscopy in XANES mode.

7.
Nano Lett ; 21(11): 4780-4786, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048263

RESUMO

The spatiotemporal origin of plasmonic chiroptical responses in nanostructures remains unexplored and unclear. Here, two orthogonally oriented Au nanorods as a prototype were investigated, with a giant chiroptical response caused by antisymmetric and symmetric mode excitations for obliquely incident left-handed circular polarization (LCP) and right-handed circular polarization (RCP) light. Time-resolved photoemission electron microscopy (PEEM) was employed to measure the near-field spatial distributions, spectra, and spatiotemporal dynamics of plasmonic modes associated with the chiroptical responses at the nanofemto scale, verifying the characteristic near-field distributions at the resonant wavelengths of the two modes and a very large spectral dichroism for LCP and RCP. More importantly, eigenmode excitations and their contributions to the ultrafast plasmonic chiroptical response in the space-time domain were directly revealed, promoting a full understanding of the ultrafast chiral origin in complex nanostructures. These findings open a way to design chiroptical nanophotonic devices for spatiotemporal control of chiral light-matter interactions.

8.
Nano Lett ; 21(21): 9270-9278, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34670093

RESUMO

Time-domain dynamic evolution properties of topological states play an important role in both fundamental physics study and practical applications of topological photonics. However, owing to the absence of available ultrafast time-domain dynamic characterization methods, studies have mostly focused on the frequency-domain-based properties, and there are few reports demonstrating the time-domain-based properties. Here, we measured the dynamic near-field responses of plasmonic topological structures of gold nanochains with the configuration of the Su-Schrieffer-Heeger model by using ultrahigh spatial-temporal resolution photoemission electron microscopy. The dephasing time of plasmonic topological edge states increases with increasing the bulk lattice number that has a threshold requirement and finally reaches saturation. We directly revealed through simulation that there is a transient bulk state in the evolution of topological edge states, that is, the energy undergoes relaxation from oscillation between the bulk lattice and the edge. This work shows a new perspective of time-domain dynamic topological photonics.

9.
Nano Lett ; 21(7): 2932-2938, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759535

RESUMO

For versatile lead-halide perovskite materials, their trap states, both in the bulk and at the surface, significantly influence optoelectronic behaviors and the performance of the materials and devices. Direct observation of the trap dynamics at the nanoscale is necessary to understand and improve the device design. In this report, we combined the femtosecond pump-probe technique and photoemission electron microscopy (PEEM) to investigate the trap states of an inorganic perovskite CsPbBr3 single-crystal microplate with spatial-temporal-energetic resolving capabilities. Several shallow trap sites were identified within the microplate, while the deep traps were resolved throughout the surface. The results revealed high-defect tolerance to the shallow traps, while the surface dynamics were dominated by the surface deep traps. The ultrafast PEEM disclosed a full landscape of fast electron transfer and accumulation of the surface trap states. These discoveries proved the excellent electronic properties of perovskite materials and the importance of surface optimization.

10.
Nano Lett ; 20(5): 3747-3753, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32242668

RESUMO

A comprehensive understanding of the ultrafast electron dynamics in two-dimensional transition metal dichalcogenides (TMDs) is necessary for their applications in optoelectronic devices. In this work, we contribute a study of ultrafast electron cooling and decay dynamics in the supported and suspended monolayer WS2 by time- and energy-resolved photoemission electron microscopy (PEEM). Electron cooling in the Q valley of the conduction band is clearly resolved in energy and time, on a time scale of 0.3 ps. Electron decay is mainly via a defect trapping process on a time scale of several picoseconds. We observed that the trap states can be produced and increased by laser illumination under an ultrahigh vacuum, and the higher local optical-field intensity led to the faster increase of trap states. The enhanced defect trapping could significantly modify the carrier dynamics and should be paid attention to in photoemission experiments for two-dimensional materials.

11.
Nano Lett ; 18(12): 7428-7434, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30248262

RESUMO

We use nano disk arrays with square and honeycomb symmetry to investigate magnetic phases and spin correlations of XY dipolar systems at the micro scale. Utilizing magnetization sensitive X-ray photoemission electron microscopy, we probe magnetic ground states and the "order-by-disorder" phenomenon predicted 30 years ago. We observe the antiferromagnetic striped ground state in square lattices, and 6-fold symmetric structures, including trigonal vortex lattices and disordered floating vortices, in the honeycomb lattice. The spin frustration in the honeycomb lattice causes a phase transition from a long-range ordered locked phase over a floating phase with quasi long-range order and indications of a Berezinskii-Thouless-Kosterlitz-like character, to the thermally excited paramagnetic state. Absent spatial correlation and quasi periodic switching of isolated vortices in the quasi long-range ordered phase suggest a degeneracy of the vortex circulation.

12.
Nano Lett ; 17(11): 6606-6612, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29052414

RESUMO

Electron emission by femtosecond laser pulses from individual Au nanorods is studied with a time-of-flight momentum resolving photoemission electron microscope (ToF k-PEEM). The Au nanorods adhere to a transparent indium-tin oxide substrate, allowing for illumination from the rear side at normal incidence. Localized plasmon polaritons are resonantly excited at 800 nm with 100 fs long pulses. The momentum distribution of emitted electrons reveals two distinct emission mechanisms: a coherent multiphoton photoemission process from the optically heated electron gas leads to an isotropic emission distribution. In contrast, an additional emission process resulting from the optical field enhancement at both ends of the nanorod leads to a strongly directional emission parallel to the nanorod's long axis. The relative intensity of both contributions can be controlled by the peak intensity of the incident light.

13.
Nano Lett ; 16(4): 2432-8, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27018661

RESUMO

We reveal an explicit strategy to design the magneto-optic response of a magneto-plasmonic crystal by correlating near- and far-fields effects. We use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nanopatterned magnetic surface that supports plasmon polaritons. By using different photon energies and polarization states of the incident light we reveal that the electric near-field is either concentrated in spots forming a hexagonal lattice with the same symmetry as the Ni nanopattern or in stripes oriented along the Γ-K direction of the lattice and perpendicular to the polarization direction. We show that the polarization-dependent near-field enhancement on the patterned surface is directly correlated to both the excitation of surface plasmon polaritons on the patterned surface as well as the enhancement of the polar magneto-optical Kerr effect. We obtain a relationship between the size of the enhanced magneto-optical behavior and the polarization and wavelength of optical excitation. The engineering of the magneto-optic response based on the plasmon-induced modification of the optical properties introduces the concept of a magneto-plasmonic meta-structure.

14.
Surf Sci ; 643: 52-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26865736

RESUMO

In the present contribution we present an overview of our recent studies using the "kinetics by imaging" approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the µm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported µm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics.

15.
Philos Trans A Math Phys Eng Sci ; 373(2036)2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25624510

RESUMO

We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

16.
ACS Nano ; 18(3): 1931-1947, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197410

RESUMO

The ultrafast carrier dynamics of junctions between two chemically identical, but electronically distinct, transition metal dichalcogenides (TMDs) remains largely unknown. Here, we employ time-resolved photoemission electron microscopy (TR-PEEM) to probe the ultrafast carrier dynamics of a monolayer-to-multilayer (1L-ML) WSe2 junction. The TR-PEEM signals recorded for the individual components of the junction reveal the sub-ps carrier cooling dynamics of 1L- and 7L-WSe2, as well as few-ps exciton-exciton annihilation occurring on 1L-WSe2. We observe ultrafast interfacial hole (h) transfer from 1L- to 7L-WSe2 on an ∼0.2 ps time scale. The resultant excess h density in 7L-WSe2 decays by carrier recombination across the junction interface on an ∼100 ps time scale. Reminiscent of the behavior at a depletion region, the TR-PEEM image reveals the h density accumulation on the 7L-WSe2 interface, with a decay length ∼0.60 ± 0.17 µm. These charge transfer and recombination dynamics are in agreement with ab initio quantum dynamics. The computed orbital densities reveal that charge transfer occurs from the basal plane, which extends over both 1L and ML regions, to the upper plane localized on the ML region. This mode of charge transfer is distinctive to chemically homogeneous junctions of layered materials and constitutes an additional carrier deactivation pathway that should be considered in studies of 1L-TMDs found alongside their ML, a common occurrence in exfoliated samples.

17.
Ultramicroscopy ; 253: 113819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37549583

RESUMO

Photoemission electron microscopy (PEEM) is a unique and powerful tool for studying the electronic properties of materials and surfaces. However, it requires intense and well-controlled light sources with photon energies ranging from the UV to soft X-rays for achieving high spatial resolution and image contrast. Traditionally, many PEEMs were installed at synchrotron light sources to access intense and tunable soft X-rays. More recently, the maturation of solid-state lasers has opened a new avenue for laboratory-based PEEMs using laser-based UV light at lower photon energies. Here, we report on the characteristics of a laser-based UV light source that was recently integrated with a PEEM instrument. The system consists of a high repetition rate, tunable wavelength laser coupled to a harmonics generation module, which generates deep-UV radiation from 192 nm to 210 nm. We comment on the spectral characteristics and overall laser system stability, as well as on the effects of space charge within the PEEM microscope at high UV laser fluxes. Further, we show an example of imaging on gallium nitride, where the higher UV photon energy and flux of the laser provides considerably improved image quality, compared to a conventional light source. These results demonstrate the capabilities of laser-based UV light sources for advancing laboratory-based PEEMs.

18.
J Phys Condens Matter ; 35(49)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582382

RESUMO

L3M2,3M2,3Auger transition is measured near the L3resonance of ferromagnetic Fe films on W(110). The kinetic energies of the Auger peaks display the typical Raman behaviour for photon energies well below the absorption threshold, where the Auger energy follows the changes in the photon energy. Classical Auger behaviour with constant kinetic energy sets in at about 1.5 eV below the L3resonance independently from the number of Fe layers down to the monolayer thickness. Strong x-ray circular magnetic dichroism is observed at the L3edge in the entire L3M2,3M2,3Auger spectrum. Different Auger features originating from the final state with two 3p core holes show slight variations in the dichroic signal, which is attributed to the exchange interaction between the core holes and the valence band. Finally, XMCD-PEEM magnetic domain imaging using Auger electrons is demonstrated with a high level of contrast and lateral resolution approaching that of imaging with secondary photoelectrons.

19.
ACS Nano ; 17(17): 16682-16694, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37581747

RESUMO

Strain engineering is an attractive approach for tuning the local optoelectronic properties of transition metal dichalcogenides (TMDs). While strain has been shown to affect the nanosecond carrier recombination dynamics of TMDs, its influence on the sub-picosecond electronic relaxation dynamics is still unexplored. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and nonadiabatic ab initio molecular dynamics (NAMD) to investigate the ultrafast dynamics of wrinkled multilayer (ML) MoS2 comprising 17 layers. Following 2.41 eV photoexcitation, electronic relaxation at the Γ valley occurs with a time constant of 97 ± 2 fs for wrinkled ML-MoS2 and 120 ± 2 fs for flat ML-MoS2. NAMD shows that wrinkling permits larger amplitude motions of MoS2 layers, relaxes electron-phonon coupling selection rules, perturbs chemical bonding, and increases the electronic density of states. As a result, the nonadiabatic coupling grows and electronic relaxation becomes faster compared to flat ML-MoS2. Our study suggests that the sub-picosecond electronic relaxation dynamics of TMDs is amenable to strain engineering and that applications which require long-lived hot carriers, such as hot-electron-driven light harvesting and photocatalysis, should employ wrinkle-free TMDs.

20.
ACS Nano ; 16(10): 16363-16371, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36129847

RESUMO

LixCoO2 (LCO) is a common battery cathode material that has recently emerged as a promising material for other applications including electrocatalysis and as electrochemical random access memory (ECRAM). During charge-discharge cycling LCO exhibits phase transformations that are significantly complicated by electron correlation. While the bulk phase diagram for an ensemble of battery particles has been studied extensively, it remains unclear how these phases scale to nanometer dimensions and the effects of strain and diffusional anisotropy at the single-particle scale. Understanding these effects is critical to modeling battery performance and for predicting the scalability and performance of electrocatalysts and ECRAM. Here we investigate isolated, epitaxial LiCoO2 islands grown by pulsed laser deposition. After electrochemical cycling of the islands, conductive atomic force microscopy (c-AFM) is used to image the spatial distribution of conductive and insulating phases. Above 20 nm island thicknesses, we observe a kinetically arrested state in which the phase boundary is perpendicular to the Li-planes; we propose a model and present image analysis results that show smaller LCO islands have a higher conductive fraction than larger area islands, and the overall conductive fraction is consistent with the lithiation state. Thinner islands (14 nm), with a larger surface to volume ratio, are found to exhibit a striping pattern, which suggests surface energy can dominate below a critical dimension. When increasing force is applied through the AFM tip to strain the LCO islands, significant shifts in current flow are observed, and underlying mechanisms for this behavior are discussed. The c-AFM images are compared with photoemission electron microscopy images, which are used to acquire statistics across hundreds of particles. The results indicate that strain and morphology become more critical to electrochemical performance as particles approach nanometer dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA