RESUMO
Orientation-controlled polymeric fiber is one of the most exciting research topics to rationalize the multifunctionality for various applications. In order to realize this goal, the growth of polymeric fibers should be controlled using various techniques like extrusion, molding, drawing, and self-assembly. Among the various candidates to fabricate the orientation-controlled polymeric fibers, the template-assisted assembly guided by a liquid crystal (LC) matrix is the most promising because the template can be manipulated easily with various methods like surface anchoring, rubbing, geometric confinement, and electric field. This review introduces the recent progress toward the directed growth of polymeric fibers using the LC template. Three representative LC-templated polymerization techniques to fabricate fibers include chemical or physical polymerization from the monomers mixed in LC matrix, patterned fibers formed from LC-templated reactive mesogens, and orientation-controlled nanofibers by infiltrating vaporized monomers between LC molecules. The orientation-controlled polymeric fibers will be used in electro-optical switching tools, tunable hydrophilic or hydrophobic surfaces, and control of phosphorescence, which can open a way to design, fabricate, and modulate nano- to micron-scale fibers with various functions on demand.
RESUMO
Capillary-channeled polymer fiber (C-CP) solid-phase extraction tips have demonstrated the ability to produce clean and concentrated extracellular vesicle (EV) recoveries from human urine samples in the small EV size range (< 200 nm). An organic modifier-assisted hydrophobic interaction chromatography (HIC) approach is applied in the spin-tip method under non-denaturing conditions-preserving the structure and bioactivity of the recovered vesicles. The C-CP tip method can employ either acetonitrile or glycerol as an elution modifier. The EV recoveries from the C-CP tip method (using both of these solvents) were compared to those obtained using the ultracentrifugation (UC) and polymer precipitation (exoEasy and ExoQuick) EV isolation methods for the same human urine specimen. The biophysical and quantitative characteristics of the recovered EVs using the five isolation methods were assessed based on concentration, size distribution, shape, tetraspanin surface marker protein content, and purity. In comparison to the traditionally used UC method and commercially available polymeric precipitation-based isolation kits, the C-CP tip introduces significant benefits with efficient (< 15 min processing of 12 samples here) and low-cost (< $1 per tip) EV isolations, employing sample volumes (10 µL-1 mL) and concentration (up to 4 × 1012 EVs mL-1) scales relevant for fundamental and clinical analyses. Recoveries of the target vesicles versus matrix proteins were far superior for the tip method versus the other approaches.
Assuntos
Vesículas Extracelulares , Polímeros , Glicerol , Humanos , Extração em Fase Sólida , SolventesRESUMO
A trilobal capillary-channeled polymer fiber stationary phase is evaluated for its performance for intact protein separations under reversed-phase high-performance liquid chromatography conditions. The separation quality, operational characteristics, and protein dynamic loading capacity on the fiber phases are compared to commercially-available superficially porous and monolithic columns. The trilobal or "y-shaped" polypropylene fiber phase was employed to separate a synthetic mixture of five proteins (having diverse chemistries and molecular weights). The separation quality was evaluated based on the resolution, peak heights/recoveries, peak widths, and peak areas. The present work illustrates the unique ability to operate at higher linear velocities (47.5 mm/s) while maintaining lower back pressures (â¼4 MPa), faster separation times (<8 min), and faster gradient rates using the fiber columns while yielding comparable chromatographic performance to the commercial columns. The separations employing the commercial stationary phases operate at lower linear velocities (â¼3.0 mm/s), higher back pressures (â¼9 MPa), require longer separation times (10 min), and require slightly higher compositions of organic mobile phase to effect protein elution. Likewise, based on breakthrough loading analysis of lysozyme and bovine serum albumin, the trilobal, polypropylene C-CP fiber column stationary phases demonstrate 3-9X greater binding capacities on a bed volume basis versus the commercial columns.
Assuntos
Polímeros , Polipropilenos , Polímeros/química , Porosidade , Polipropilenos/química , Cromatografia de Fase Reversa , Soroalbumina Bovina/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Considering the metal-based nanocrystal (NC) hierarchical structure requirements in many real applications, starting from basic synthesis principles of electrostatic spinning technology, the formation of functionalized fibrous materials with inorganic metallic and semiconductor nanocrystalline materials by electrostatic spinning synthesis technology in recent years was reviewed. Several typical electrostatic spinning synthesis methods for nanocrystalline materials in polymers are presented. Finally, the specific applications and perspectives of such electrostatic spun nanofibers in the biomedical field are reviewed in terms of antimicrobial fibers, biosensing and so on.
Assuntos
Nanopartículas Metálicas , Nanofibras , Nanofibras/química , Polímeros/química , Eletricidade EstáticaRESUMO
Combining the unique corona structure of worm-like patchy micelles immobilized on a polymer fiber with the molecular self-assembly of 1,3,5-benzenetricarboxamides (BTAs) leads to hierarchical superstructures with a fir-tree-like morphology. For this purpose, worm-like patchy micelles bearing pendant, functional tertiary amino groups in one of the corona patches were prepared by crystallization-driven self-assembly and immobilized on a supporting polystyrene fiber by coaxial electrospinning. The obtained patchy fibers were then immersed in an aqueous solution of a tertiary amino-functionalized BTA to induce patch-mediated molecular self-assembly to well-defined fir-tree-like superstructures upon solvent evaporation. Interestingly, defined superstructures are obtained only if the pendant functional groups in the surface patches match with the peripheral substituents of the BTA, which is attributed to a local increase in BTA concentration at the polymer fibers' surface.
RESUMO
Capillary-channeled polymer (C-CP) fibers are demonstrated as a selective stationary phase for phosphopeptide analysis via LC-MS. Taking advantage of the oxidative self-polymerization of dopamine under alkaline conditions, a simple system involving a dilute aqueous solution of 0.2% w/v dopamine hydrochloride in 0.15% w/v TRIS buffer, pH 8.5 was utilized to coat polydopamine onto nylon 6 C-CP fibers. Confirmation of the polydopamine coating on the fibers (nylon-PDA) was made through attenuated total reflection-FTIR (ATR-FTIR) analysis. Imaging using SEM was also performed to examine the morphology and topography of the nylon-PDA. Subsequent loading of Fe3+ to the nylon-PDA matrix was confirmed by SEM/energy dispersive X-ray spectroscopy (SEM/EDX). The Fe3+ -bound nylon-PDA fibers packed in a microbore column format were tested in the off-line preconcentration of phosphopeptides from a 1:100 mixture of ß-casein/BSA digests for MALDI-TOF analysis. The packed column was also installed onto an HPLC system as a platform for the online sample clean-up and enrichment of phosphopeptides from a 1:1000 mixture of ß-casein/BSA protein digests that were determined by subsequent ESI-MS analysis.
Assuntos
Indóis/química , Espectrometria de Massas/métodos , Nylons/química , Fosfopeptídeos/análise , Polímeros/química , Caseínas/química , ProteômicaRESUMO
Fluorescent nanodiamonds (fNDs) containing nitrogen vacancy (NV) centers are promising candidates for quantum sensing in biological environments. This work describes the fabrication and implementation of electrospun poly lactic-co-glycolic acid (PLGA) nanofibers embedded with fNDs for optical quantum sensing in an environment, which recapitulates the nanoscale architecture and topography of the cell niche. A protocol that produces uniformly dispersed fNDs within electrospun nanofibers is demonstrated and the resulting fibers are characterized using fluorescent microscopy and scanning electron microscopy (SEM). Optically detected magnetic resonance (ODMR) and longitudinal spin relaxometry results for fNDs and embedded fNDs are compared. A new approach for fast detection of time varying magnetic fields external to the fND embedded nanofibers is demonstrated. ODMR spectra are successfully acquired from a culture of live differentiated neural stem cells functioning as a connected neural network grown on fND embedded nanofibers. This work advances the current state of the art in quantum sensing by providing a versatile sensing platform that can be tailored to produce physiological-like cell niches to replicate biologically relevant growth environments and fast measurement protocols for the detection of co-ordinated endogenous signals from clinically relevant populations of electrically active neuronal circuits.
Assuntos
Nanodiamantes/química , Nanofibras/química , Polímeros/química , Técnicas Biossensoriais/métodos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Pontos QuânticosRESUMO
We performed an experimental analysis of the effect of phase mask alignment on the Bragg grating reflection spectra around the wavelength of λB = 1560 nm fabricated in polymer optical fiber by using a multiple order phase mask. We monitored the evolution of the reflection spectra for different values of the angle Ï by describing the tilt between the phase mask and the fiber. We observed that the peak at λB is split into five separate peaks for the nonzero tilt and that separation of the peaks increases linearly with Ï. Through comparison with theoretical data we were able to identify the five peaks as products of different grating periodicities, which are associated with the interference of different pairs of diffraction orders on the phase mask.
RESUMO
With the availability of nanoparticles with controlled size and shape, there has been renewed interest in the mechanical properties of polymer/nanoparticle blends. Despite the large number of theoretical studies, the effect of branching for nanofillers tens of nanometers in size on the elastic stiffness of these composite materials has received limited attention. Here, we examine the Young's modulus of nanocomposites based on a common block copolymer (BCP) blended with linear nanorods and nanoscale tetrapod Quantum Dots (tQDs), in electrospun fibers and thin films. We use a phenomenological lattice spring model (LSM) as a guide in understanding the changes in the Young's modulus of such composites as a function of filler shape. Reasonable agreement is achieved between the LSM and the experimental results for both nanoparticle shapes--with only a few key physical assumptions in both films and fibers--providing insight into the design of new nanocomposites and assisting in the development of a qualitative mechanistic understanding of their properties. The tQDs impart the greatest improvements, enhancing the Young's modulus by a factor of 2.5 at 20 wt.%. This is 1.5 times higher than identical composites containing nanorods. An unexpected finding from the simulations is that both the orientation of the nanoscale filler and the orientation of X-type covalent bonds at the nanoparticle-ligand interface are important for optimizing the mechanical properties of the nanocomposites. The tQD provides an orientational optimization of the interfacial and filler bonds arising from its three-dimensional branched shape unseen before in nanocomposites with inorganic nanofillers.
RESUMO
The fabrication of electrospun polymer fibers is demonstrated with anisotropic cross-sections by applying a simple pressing method. Electrospun polystyrene or poly(methyl methacrylate) fibers are pressed by flat or patterned substrates while the samples are annealed at elevated temperatures. The shapes and morphologies of the pressed polymer fibers are controlled by the experimental conditions such as the pressing force, the pressing temperature, the pressing time, and the surface pattern of the substrate. At the same pressing force, the shape changes of the polymer fibers can be controlled by the pressing time. For shorter pressing times, the deformation process is dominated by the effect of pressing and fibers with barrel-shaped cross-sections can be generated. For longer pressing times, the effect of wetting becomes more important and fibers with dumbbell-shaped cross-sections can be obtained. Hierarchical polymer fibers with nanorods are fabricated by pressing the fibers with porous anodic aluminum oxide templates.
Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Óxido de Alumínio/química , Anisotropia , Eletrodos , Microscopia Eletrônica de Varredura , Poliestirenos/químicaRESUMO
The addition of polymer fibers to cemented paste backfill (CPB) has shown promise in enhancing mechanical properties, although it also introduces changes in rheological characteristics. This study aimed to investigate the influence of different types of polymer fibers, namely virgin commercial polypropylene fiber (CPPF), recycled tire polymer fiber (RTPF), and recycled tire rubber fiber (RF), on the rheological properties of CPB mixtures through an experimental program, and provide design references for CPB pipeline transport. The results revealed consistent reductions in bulk density upon the incorporation of polymer fibers into CPB, alongside varying impacts on slump. Specifically, the addition of CPPF had a mild effect, while RTPF caused a continuous decrease in slump, and RF exhibited minimal influence up to a 4% concentration, with substantial effects thereafter. Moreover, the inclusion of fibers led to increases in apparent viscosity parameters, with RTPF inducing the most significant changes, followed by varying responses from CPPF and RF. When using RTPF for CPB reinforcement, emphasis should be placed on enhancing technical indicators related to viscosity such as energy consumption and pipeline wear during pipeline transport. Furthermore, adjustments were necessary to account for flow curve instability resulting from interactions between fibers and the paddle, with the data aligning well with the Bingham model. The addition of fibers, particularly CPPF and RF, primarily influenced plastic viscosity rather than yield stress, underscoring the limitations of slump tests in assessing rheology.
RESUMO
Accurate oxygen sensing and cost-effective fabrication are crucial for the adoption of wearable devices inside and outside the clinical setting. Here we introduce a simple strategy to create nonwoven polymeric fibrous mats for a notable contribution towards addressing this need. Although morphological manipulation of polymers for cell culture proliferation is commonplace, especially in the field of regenerative medicine, non-woven structures have not been used for oxygen sensing. We used an airbrush spraying, i.e. solution blowing, to obtain nonwoven fiber meshes embedded with a phosphorescent dye. The fibers serve as a polymer host for the phosphorescent dye and are shown to be non-cytotoxic. Different composite fibrous meshes were prepared and favorable mechanical and oxygen-sensing properties were demonstrated. A Young's modulus of 9.8 MPa was achieved and the maximum oxygen sensitivity improved by a factor of â¼2.9 compared to simple drop cast film. The fibers were also coated with silicone rubbers to produce mechanically robust sensing films. This reduced the sensing performance but improved flexibility and mechanical properties. Lastly, we are able to capture oxygen concentration maps via colorimetry using a smartphone camera, which should offer unique advantages in wider usage. Overall, the introduced composite fiber meshes show a potential to significantly improve cell cultures and healthcare monitoring via absolute oxygen sensing.
Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Oxigênio , Polímeros/química , Próteses e ImplantesRESUMO
Implantable neural devices that record neurons in various states, including static states, light activities such as walking, and vigorous activities such as running, offer opportunities for understanding brain functions and dysfunctions. However, recording neurons under vigorous activities remains a long-standing challenge because it leads to intense brain deformation. Thus, three key requirements are needed simultaneously for neural devices, that is, low modulus, low specific interfacial impedance, and high electrical conductivity, to realize stable device/brain interfaces and high-quality transmission of neural signals. However, they always contradict each other in current material strategies. Here, a soft fiber neural device capable of stably tracking individual neurons in the deep brain of medium-sized animals under vigorous activity is reported. Inspired by the axon architecture, this fiber neural device is constructed with a conductive gel fiber possessing a network-in-liquid structure using conjugated polymers and liquid matrices and then insulated with soft fluorine rubber. This strategy reconciles the contradictions and simultaneously confers the fiber neural device with low modulus (300 kPa), low specific impedance (579 kΩ µm2), and high electrical conductivity (32 700 S m-1) - ≈1-3 times higher than hydrogels. Stable single-unit spike tracking in running cats, which promises new opportunities for neuroscience is demonstrated.
Assuntos
Axônios , Condutividade Elétrica , Animais , Axônios/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Polímeros/químicaRESUMO
Polymer fibers that combine high toughness and heat resistance are hard to achieve, which, however, hold tremendous promise in demanding applications such as aerospace and military. This prohibitive design task exists due to the opposing property dependencies on chain dynamics because traditional heat-resistant materials with rigid molecular structures typically lack the mechanism of energy dissipation. Aramid nanofibers have received great attention as high-performance nanoscale building units due to their intriguing mechanical and thermal properties, but their distinct structural features are yet to be fully captured. We show that aramid nanofibers form nanoscale crimps during the removal of water, which primarily resides at the defect planes of pleated sheets, where the folding can occur. The precise control of such a structural relaxation can be realized by exerting axial loadings on hydrogel fibers, which allows the emergence of aramid fibers with varying angles of crimps. These crimped fibers integrate high toughness with heat resistance, thanks to the extensible nature of nanoscale crimps with rigid molecular structures of poly(p-phenylene terephthalamide), promising as a template for stable stretchable electronics. The tensile strength/modulus (392-944 MPa/11-29 GPa), stretchability (25-163%), and toughness (154-445 MJ/cm3) are achieved according to the degree of crimping. Intriguingly, a toughness of around 430 MJ/m3 can be maintained after calcination below the relaxation temperature (259 °C) for 50 h. Even after calcination at 300 °C for 10 h, a toughness of 310 MJ/m3 is kept, outperforming existing polymer materials. Our multiscale design strategy based on water-bearing aramid nanofibers provides a potent pathway for tackling the challenge for achieving conflicting property combinations.
RESUMO
BACKGROUND: Exosomes, a subset of extracellular vesicles (EVs), are a type of membrane-secreted vesicle essential for intercellular communication. There is a great deal of interest in developing methods to isolate and quantify exosomes to study their role in intercellular processes and as potential therapeutic delivery systems. Polyester, capillary-channeled polymer fiber columns and spin-down tips are highly efficient, low-cost means of exosome isolation. As the methodology evolves, there remain questions as to the optimum elution solvent for specific end-uses of the recovered vesicles; fundamental biochemistry, clinical diagnostics, or therapeutic vectors. RESULTS: While both acetonitrile and glycerol have been proven highly successful in terms of EV recoveries in the hydrophobic interaction chromatography workflow, many biological studies entail the use of the non-ionic detergent, Tween-20, as a working solvent. Here we evaluate the use of Tween-20 as the elution solvent for the recovery of exosomes. A novel 10-min, two-step gradient elution method, employing 0.1 % v/v Tween-20, efficiently isolated EVs at a concentration of â¼1011 EV mL-1 from a 100 µL urine injection. Integration of absorbance and multi-angle light scattering detectors in standard HPLC instrumentation enables a comprehensive single-injection determination of eluted exosome concentration and sizes. Transmission electron microscopy verifies the retention of the vesicular structure of the exosomes. The micro-bicinchoninic acid protein quantification assay confirmed high-purity isolations of exosomes (â¼99 % removal of background proteins) SIGNIFICANCE: The effective use of Tween-20 as an elution solvent for exosome isolation/purification using capillary-channeled polymer fiber columns adds greater versatility to the portfolio of the approach. The proposed method holds promise for a wide range of fundamental biochemistry, clinical diagnostics, and therapeutic applications, marking a significant advancement in EV-based methodologies.
Assuntos
Exossomos , Poliésteres , Polissorbatos , Solventes , Exossomos/química , Exossomos/metabolismo , Poliésteres/química , Humanos , Polissorbatos/química , Solventes/química , Polímeros/química , Cromatografia Líquida de Alta PressãoRESUMO
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
RESUMO
Hybrid nanofibers of a chitosan-polycaprolactone blend containing titanium dioxide nanoparticles TiO2NPs, were prepared through electrospinning to study their adsorption and photocatalytic degradation capabilities of the model organic water pollutants, rhodamine B, RhB. To obtain uniform and bead-free nanofibers, an optimization of the electrospinning parameters was performed. The optimization was carried out by systematically adjusting the solution conditions (solvent, concentration, and polymer ratio) and instrumental parameters (voltage, needle tip-collector distance, and flow). The obtained materials were characterized by FT-IR, TGA, DSC, SEM, TEM, mechanical tensile test, and water contact angle. The photoactivity was investigated using a batch-type system by following UV-Vis absorbance and fluorescence of RhB. TiO2NPs were incorporated ex-situ into the polymer matrix, contributing to good mechanical properties and higher hydrophilicity of the material. The results showed that the presence of chitosan in the nanofibers significantly increased the adsorption of RhB and its photocatalytic degradation by TiO2NPs (5, 55 and 80 % of RhB degradation with NFs of PCL, TiO2/PCL and TiO2/CS-PCL, after 30 h of light irradiation, respectively), evidencing a synergistic effect between them. The results are attributed to an attraction of RhB by chitosan to the vicinity of TiO2NPs, favouring initial adsorption and degradation, phenomenon known as "bait-and-hook-and-destruct" effect.
Assuntos
Quitosana , Nanofibras , Nanopartículas , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes , CatáliseRESUMO
The aim of the study was to check the possibility of reusing aggregate from recycled concrete waste and rubber granules from car tires as partial substitution of natural aggregate. The main objective was to investigate the effects of recycled waste aggregate modified with polymer fibers on the compressive and flexural strength, modulus of elasticity and permeability of pervious concrete. Fibers with a multifilament structure and length of 54 mm were deliberately used to strengthen the joints among grains (max size 31.5 mm). Eight batches of designed mixes were used in the production of pervious concrete at fixed water/binder ratio of 0.34 with cement content of 350 kg/m3. Results showed that the use of recycled concrete aggregate (8/31.5 mm) with replacement ratio of 50% (by weight of aggregate) improved the mechanical properties of pervious concrete in all analyzed cases. Whereas the replacement of 10% rubber waste aggregate (2/5 mm) by volume of aggregate reduced the compressive strength by a maximum of 11.4%. Addition of 2 kg/m3 of polymer fibers proved the strengthening effect of concrete structure, enhancing the compressive and tensile strengths by a maximum of 23.4% and 25.0%, respectively. The obtained test results demonstrate the possibility of using the recycled waste aggregates in decarbonization process of pervious concrete production, but further laboratory and field performance tests are needed.
RESUMO
Cell culture media metal content is critical in mammalian cell growth and monoclonal antibody productivity. The variability in metal concentrations has multiple sources of origin. As such, there is a need to analyze media before, during, and after production. Furthermore, it is not the simple presence of a given metal that can impact processes, but also their chemical form that is, speciation. To a first approximation, it is instructive to simply and quickly ascertain if the metals exist as inorganic (free metal) ions or are part of an organometallic complex (ligated). Here we present a simple workflow involving the capture of ligated metals on a fiber stationary phase with passage of the free ions to an inductively coupled plasma optical emission spectrometry for quantification; the captured species are subsequently eluted for quantification. This first level of speciation (free vs. ligated) can be informative towards sources of contaminant metal species and means to assess bioreactor processes.
Assuntos
Técnicas de Cultura de Células , Metais , Espectrometria de Massas/métodos , Análise Espectral , Metais/análiseRESUMO
The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended "brush" type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate.