Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 924
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2220622120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126676

RESUMO

The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.


Assuntos
Diabetes Mellitus Tipo 2 , Oryza , Sintase do Amido , Amido Resistente/metabolismo , Oryza/genética , Sintase do Amido/genética , Melhoramento Vegetal , Amido , Amilose , Proteínas de Plantas/genética
2.
J Nutr ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019160

RESUMO

BACKGROUND: Gut microbiome composition profoundly impacts host physiology and is modulated by several environmental factors, most prominently diet. The composition of gut microbiota changes over the lifespan, particularly during the earliest and latest stages. However, we know less about diet-aging interactions on the gut microbiome. We previously showed that diets with different glycemic indices, based on the ratio of rapidly digested amylopectin to slowly digested amylose, led to altered composition of gut microbiota in male C57BL/6J mice. OBJECTIVES: Here, we examined the role of aging in influencing dietary effects on gut microbiota composition and aimed to identify gut bacterial taxa that respond to diet and aging. METHODS: We studied 3 age groups of male C57BL/6J wild-type mice: young (4 mo), middle-aged (13.5 mo), and old (22 mo), all fed either high glycemic (HG) or low glycemic (LG) diets matched for caloric content and macronutrient composition. Fecal microbiome composition was determined by 16S rDNA metagenomic sequencing and was evaluated for changes in α- and ß-diversity and bacterial taxa that change by age, diet, or both. RESULTS: Young mice displayed lower α-diversity scores than middle-aged counterparts but exhibited more pronounced differences in ß-diversity between diets. In contrast, old mice had slightly lower α-diversity scores than middle-aged mice, with significantly higher ß-diversity distances. Within-group variance was lowest in young, LG-fed mice and highest in old, HG-fed mice. Differential abundance analysis revealed taxa associated with both aging and diet. Most differential taxa demonstrated significant interactions between diet and aging. Notably, several members of the Lachnospiraceae family increased with aging and HG diet, whereas taxa from the Bacteroides_H genus increased with the LG diet. Akkermansia muciniphila decreased with aging. CONCLUSIONS: These findings illustrate the complex interplay between diet and aging in shaping the gut microbiota, potentially contributing to age-related disease.

3.
Pharmacol Res ; 205: 107232, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825157

RESUMO

Type 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce-RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce-RS3 or placebo (native starch from Canna edulis) for 12 weeks (20 g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16 S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, and increased the glutathione peroxidase. Based on the 16 S rRNA sequencing, TQM, the correlation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce-RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstly confirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871).


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Método Duplo-Cego , Masculino , Pessoa de Meia-Idade , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/sangue , Hiperlipidemias/microbiologia , Feminino , Adulto , Lipídeos/sangue , Amido Resistente , Amido , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologia , Idoso
4.
J Nanobiotechnology ; 22(1): 65, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365722

RESUMO

BACKGROUNDS: The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS: In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION: These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-ß-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Feminino , Humanos , Camundongos , Gravidez , Proliferação de Células , Dieta , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite , Sus scrofa
5.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930947

RESUMO

Starch is a natural plant raw material applicable in many areas of industry. In practice, it is most often used in a modified form, i.e., after various treatments aimed at modifying its properties. Modifications of native starch enable producing resistant starch, which, as a prebiotic with confirmed health-promoting properties, has been increasingly used as a food additive. The present study aimed to determine the effect of roasting retrograded starch with the addition of anhydrous glucose at different temperatures (110, 130 or 150 °C) and different times (5 or 24 h) on the modified starch's properties. The results of high-performance size-exclusion chromatography coupled with refractive index detector (HPSEC/RI) analysis and the changes observed in the solubility of starch roasted with glucose in DMSO, as well as in its other properties, confirm the changes in its molecular structure, including thermolytic degradation and the ongoing polymerization of starch with added glucose.


Assuntos
Glucose , Amido , Glucose/química , Amido/química , Solubilidade , Temperatura Alta , Amido Resistente , Culinária , Temperatura
6.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893561

RESUMO

The application of chemical operations in food processing, in which pure chemical compounds are used to modify food ingredients, often raises social concerns. One of the most frequently modified dietary substances is starch, e.g., E1401-E1404, E1412-E1414, E1420, E1422, E1440, E1442, and E1450-E1452. An alternative solution to chemical treatments seems to be the use of raw materials naturally containing substrates applied for starch modification. Heating starch with a lemon juice concentrate can be considered a novel and effective method for producing starch citrate, which is part of the so-called "green chemistry". The modified preparations obtained as a result of potato starch esterification with natural lemon juice had a comparable degree of esterification to that of the esters produced with pure citric acid. In addition, the use of the juice doubled their resistance to amylolytic enzymes compared to the preparations made with pure acid. Replacing citric acid with lemon juice can facilitate the esterification process, and the analyzed properties of both types of modified preparations indicate that starch esters produced with pure citric acid can be successfully replaced by those produced using natural lemon juice, which may increase the social acceptance of these modified preparations.


Assuntos
Ácido Cítrico , Citrus , Sucos de Frutas e Vegetais , Solanum tuberosum , Amido , Esterificação , Ácido Cítrico/química , Amido/química , Citrus/química , Sucos de Frutas e Vegetais/análise , Solanum tuberosum/química , Manipulação de Alimentos/métodos
7.
Molecules ; 29(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999160

RESUMO

Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine tablets were produced using the wet granulation method followed by dip coating. The effect of the coating on the colon-targeted release of the resultant delivery system was inspected in healthy human volunteers and rabbits using roentgenography. The results show that drug release was controlled when the coating level was 10% w/w. The release percentage in the upper gastric phase (pH 1.2, simulated gastric fluid) was less than 6% and reached up to 59.51% w/w after 14 h in simulated colonic fluid. In addition to in vivo roentgenographic studies in healthy rabbits, human volunteer studies proved the colon targeting efficiency of the formulation. These results clearly demonstrated that chemically modified mandua starch has high effectiveness as a novel aqueous coating material for controlled release or colon targeting.


Assuntos
Liberação Controlada de Fármacos , Mesalamina , Amido , Comprimidos , Mesalamina/química , Mesalamina/farmacocinética , Coelhos , Amido/química , Animais , Humanos , Concentração de Íons de Hidrogênio , Fosforilação , Preparações de Ação Retardada/química , Colo/metabolismo
8.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257283

RESUMO

Obesity has become a major disease that endangers human health. Studies have shown that dietary interventions can reduce the prevalence of obesity and diabetes. Resistant starch (RS) exerts anti-obesity effects, alleviates metabolic syndrome, and maintains intestinal health. However, different RS types have different physical and chemical properties. Current research on RS has focused mainly on RS types 2, 3, and 4, with few studies on RS1. Therefore, this study aimed to investigate the effect of RS1 on obesity and gut microbiota structure in mice. In this study, we investigated the effect of potato RS type 1 (PRS1) on obesity and inflammation. Mouse weights, as well as their food intake, blood glucose, and lipid indexes, were assessed, and inflammatory factors were measured in the blood and tissues of the mice. We also analyzed the expression levels of related genes using PCR, with 16S rRNA sequencing used to study intestinal microbiota changes in the mice. Finally, the level of short-chain fatty acids was determined. The results indicated that PRS1 promoted host obesity and weight gain and increased blood glucose and inflammatory cytokine levels by altering the gut microbiota structure.


Assuntos
Microbioma Gastrointestinal , Solanum tuberosum , Humanos , Animais , Camundongos , Amido Resistente , Dieta Hiperlipídica/efeitos adversos , Glicemia , RNA Ribossômico 16S , Amido/farmacologia , Obesidade/etiologia
9.
Food Technol Biotechnol ; 62(1): 26-34, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601966

RESUMO

Research background: Enzymatically resistant maltodextrins (ERM) are a resistant starch type 4, synthesized from native starch. They are obtained by the sequential application of two processes: pyrodextrinization, which produces pyrodextrins, and enzymatic hydrolysis, which produces ERM. In these processes atypical bonds are formed that confer pyrodextrins and ERM similar properties to dietary fiber, such as resistance to digestion. The aim of this work is to determine and evaluate some physicochemical properties of pyrodextrins and ERM obtained from native starch isolated from makal (Xanthosoma yucatanense) tubers. Experimental approach: Pyrodextrinization and complementary hydrolysis were conducted using factorial designs. For pyrodextrinization, factors and their levels were (m(starch):V(HCl))=80:1 and 160:1 (c(HCl)=2.2 M), temperature 90 and 110 °C and reaction time 1 and 3 h, and for CH, α-amylase per pyrodextrin volume fractions 0.5 and 1 µL/mL and reaction time 10 and 30 min. The physicochemical profile included determination of resistant starch content, estimation of color change (ΔE), microscopy and determination of dextrose equivalents (DE). Results and conclusions: According to the factorial design, the best treatment conditions for pyrodextrinization were: (m(starch):V(HCl))=160:1, 90 °C and 3 h, since they resulted in the highest resistant starch content (84.73 %) and the lowest ΔE (3.742). Due to the low DE (13.89 %), increased amount of resistant starch (90.73 %) and low ΔE (4.24) in the resulting ERM, complementary hydrolysis with α-amylase per pyrodextrin volume fraction 0.5 µL/mL and hydrolysis time 10 min was selected as the best treatment. Novelty and scientific contribution: The results show that the pyrodextrins and ERM obtained from makal can be used as ingredients for the development of functional foods, due to their high content of indigestible material and low degree of browning.

10.
J Sci Food Agric ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953558

RESUMO

BACKGROUND: Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS: Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION: The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.

11.
Compr Rev Food Sci Food Saf ; 23(3): e13355, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38685870

RESUMO

Resistant starch type 3 (RS3), often found in cooked starchy food, has various health benefits due to its indigestible properties and physiological functions such as promoting the abundance of gut beneficial microbial flora and inhibiting the growth of intestinal pathogenic bacteria. However, it is challenging to develop starchy food with high RS3 content. This review aims to provide a detailed overview of current advancements to enhance RS3 content in starchy food and its effects of RS3 on gut microbiota. These approaches include breeding high-amylose cereals through gene editing techniques, processing, enzyme treatments, storage, formation of RS3 nanoparticles, and the incorporation of bioactive compounds. The mechanisms, specific conditions, advantages, and disadvantages associated with each approach and the potential effects of RS3 prepared by different methods on gut microbiota are summarized. In conclusion, this review contains important information that aims to provide guidelines for developing an efficient RS3 preparation process and promote the consumption of RS3-enriched starchy foods to improve overall health outcomes.


Assuntos
Microbioma Gastrointestinal , Amido , Amido/química , Humanos , Amido Resistente , Grão Comestível/química , Animais
12.
World J Microbiol Biotechnol ; 40(9): 271, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030369

RESUMO

Microalgal biomass for biofuel production, integration into functional food, and feed supplementation has generated substantial interest worldwide due to its high growth rate, non-competitiveness for agronomic land, ease of cultivation in containments, and presence of several bioactive molecules. In this study, genetic engineering tools were employed to develop transgenic lines of freshwater microalga Chlorella vulgaris with a higher starch content, by up-regulating ADP-glucose pyrophosphorylase (AGPase), which is a rate-limiting enzyme in starch biosynthesis. Expression of the Escherichia coli glgC (AGPase homolog) gene in C. vulgaris led to an increase in total carbohydrate content up to 45.1% (dry cell weight, DCW) in the transgenic line as compared to 34.2% (DCW) in the untransformed control. The starch content improved up to 16% (DCW) in the transgenic alga compared to 10% (DCW) in the control. However, the content of total lipid, carotenoid, and chlorophyll decreased differentially in the transgenic lines. The carbohydrate-rich biomass from the transgenic algal line was used to produce bioethanol via yeast fermentation, which resulted in a higher ethanol yield of 82.82 mg/L as compared to 54.41 mg/L from the untransformed control. The in vitro digestibility of the transgenic algal starch revealed a resistant starch content of up to 7% of total starch. Faster growth of four probiotic bacterial species along with a lowering of the pH of the growth medium indicated transgenic alga to exert a positive prebiotic effect. Taken together, the study documents the utilization of genetically engineered C. vulgaris with enriched carbohydrates as bioethanol feedstock and functional food ingredients.


Assuntos
Biocombustíveis , Biomassa , Chlorella vulgaris , Escherichia coli , Etanol , Fermentação , Glucose-1-Fosfato Adenililtransferase , Microalgas , Prebióticos , Amido , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Etanol/metabolismo , Amido/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microalgas/metabolismo , Microalgas/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Engenharia Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica/métodos
13.
Plant Foods Hum Nutr ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951375

RESUMO

This study aimed at comparing the carbohydrate composition of three banana varieties (cv. Nanica, Nanicão, and Prata) and investigating the effect of a single dose of cooked green banana pulp beverage (GBPd) on plasma glycemic homeostasis indexes (glucose, PYY, GIP, insulin) and hunger and satiety sensation (visual analog scale-VAS). The bananas were classified according to the color scale. The fiber, total carbohydrate, and resistant starch (RS) were determined using validated methods. Glucose homeostasis indexes and hunger/satiety sensation were determined in ten healthy women in two stages before and after intake: (1) glucose solution (250 g/L); (2) one week later, consumption of the glucose solution plus 75 g/L of GBPd. Blood samples were collected twice in stage-1 and every 15 min for 2 h in stage-2. Cv. Nanicão was selected, because it presented a higher content in RS and dietary fiber on dry base than the other cultivars. Thus, it was used to test glycemic response. After 2 h of GBPd intake, no difference was observed in hunger/satiety sensation and plasma glycemic homeostasis indexes, except for a decrease in plasma glucose concentration (-15%, p = 0.0232) compared to stage-1. These results suggest that cv. Nanicão has a higher potential as a functional ingredient and can influence the reduction in the glycemic index of a meal compared to other cultivars. However, it had not a short-term effect on hormones GIP and PYY in healthy women. Further research is needed to understand the long-term effects and mechanisms of green banana on glycemic control and satiety.

14.
J Biol Chem ; 298(5): 101896, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378131

RESUMO

Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Ruminococcus , Amilopectina/metabolismo , Amilose/metabolismo , Proteínas de Transporte/metabolismo , Carboidratos da Dieta , Humanos , Amido/metabolismo
15.
J Biol Chem ; 298(6): 102049, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35597281

RESUMO

Not all starches in the human diet are created equal: "resistant starches" are consolidated aggregates of the α-glucan polysaccharides amylose and amylopectin, which escape digestion by salivary and pancreatic amylases. Upon reaching the large intestine, resistant starches become fodder for members of the human gut microbiota, impacting the metabolism of both the symbionts and the host. In a recent study, Koropatkin et al. provided new molecular insight into how a keystone bacterium in the human gut microbiota adheres to resistant starches as a prelude to their breakdown and fermentation.


Assuntos
Microbioma Gastrointestinal , Amido , Amilopectina/metabolismo , Amilose/metabolismo , Glucanos , Humanos , Amido/metabolismo , alfa-Amilases/metabolismo
16.
J Nutr ; 153(1): 131-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913446

RESUMO

BACKGROUND: High amylose starchy foods modulate the postprandial metabolic response in humans. However, the mechanisms of their metabolic benefits and their impact on the subsequent meal have not been fully elucidated. OBJECTIVE: We aimed to evaluate whether glucose and insulin responses to a standard lunch are influenced by the consumption of amylose-rich bread at breakfast in overweight adults and whether changes in plasma short chain fatty acids (SCFAs) concentrations contribute to their metabolic effects. METHODS: Using a randomized crossover design, 11 men and 9 women, BMI 30 ± 3 kg/m2, 48 ± 19 y, consumed at breakfast 2 breads made with high amylose flour (HAF): 85%-HAF (180 g) and 75%-HAF (170 g), and control bread (120 g) containing 100% conventional flour. Plasma samples were collected at fasting, 4 h after breakfast, and 2 h after a standard lunch to measure glucose, insulin, and SCFA concentrations. ANOVA posthoc analyses were used for comparisons. RESULTS: Postprandial plasma glucose responses were 27% and 39% lower after breakfasts with 85%- and 70%-HAF breads than control bread (P = 0.026 and P = 0.003, respectively), with no difference after lunch. Insulin responses were not different between the 3 breakfasts, whereas there was a 28% lower response after the lunch following breakfast with 85%-HAF bread than the control (P = 0.049). Propionate concentrations increased from fasting by 9% and 12% 6 h after breakfasts with 85%- and 70%-HAF breads and decreased by 11% with control bread (P < 0.05). At 6 h after breakfast with 70%-HAF bread, plasma propionate and insulin were inversely correlated (r = -0.566; P = 0.044). CONCLUSIONS: Amylose-rich bread reduces the postprandial glucose response after breakfast and insulin concentrations after the subsequent lunch in overweight adults. This second meal effect may be mediated by the elevation of plasma propionate due to intestinal fermentation of resistant starch. High amylose products could be a promising tool in a dietary prevention strategy for type 2 diabetes. THIS TRIAL WAS REGISTERED AT CLINICAL TRIAL REGISTRY AS: NCT03899974 (https://www. CLINICALTRIALS: gov/ct2/show/NCT03899974).


Assuntos
Amilose , Insulina , Sobrepeso , Propionatos , Adulto , Feminino , Humanos , Masculino , Amilose/administração & dosagem , Glicemia/metabolismo , Pão , Desjejum , Estudos Cross-Over , Glucose , Insulina Regular Humana , Período Pós-Prandial , Propionatos/sangue , Triticum
17.
Pharmacol Res ; 190: 106714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863429

RESUMO

Ischemic stroke is closely associated with gut microbiota dysbiosis and intestinal barrier dysfunction. Prebiotic intervention could modulate the intestinal microbiota, thus considered a practical strategy for neurological disorders. Puerariae Lobatae Radix-resistant starch (PLR-RS) is a potential novel prebiotic; however, its role in ischemic stroke remains unknown. This study aimed to clarify the effects and underlying mechanisms of PLR-RS in ischemic stroke. Middle cerebral artery occlusion surgery was performed to establish a model of ischemic stroke in rats. After gavage for 14 days, PLR-RS attenuated ischemic stroke-induced brain impairment and gut barrier dysfunction. Moreover, PLR-RS rescued gut microbiota dysbiosis and enriched Akkermansia and Bifidobacterium. We transplanted the fecal microbiota from PLR-RS-treated rats into rats with ischemic stroke and found that the brain and colon damage were also ameliorated. Notably, we found that PLR-RS promoted the gut microbiota to produce a higher level of melatonin. Intriguingly, exogenous gavage of melatonin attenuated ischemic stroke injury. In particular, melatonin attenuated brain impairment via a positive co-occurrence pattern in the intestinal microecology. Specific beneficial bacteria served as leaders or keystone species to promoted gut homeostasis, such as Enterobacter, Bacteroidales_S24-7_group, Prevotella_9, Ruminococcaceae and Lachnospiraceae. Thus, this new underlying mechanism could explain that the therapeutic efficacy of PLR-RS on ischemic stroke at least partly attributed to gut microbiota-derived melatonin. In summary, improving intestinal microecology by prebiotic intervention and melatonin supplementation in the gut were found to be effective therapies for ischemic stroke.


Assuntos
Depressores do Sistema Nervoso Central , Microbioma Gastrointestinal , AVC Isquêmico , Melatonina , Pueraria , Animais , Ratos , Disbiose/microbiologia , AVC Isquêmico/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Prebióticos , Amido Resistente , Depressores do Sistema Nervoso Central/farmacologia , Depressores do Sistema Nervoso Central/uso terapêutico
18.
Crit Rev Food Sci Nutr ; 63(24): 6923-6945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35142240

RESUMO

Non-degradable plastic places a serious burden on the environment, so consumers and researchers are working to develop biodegradable, safe, and sustainable food packaging materials. The starch-based film has become emerging material for food packaging. Not only does it shows excellent physicochemical properties, but also provides the desired degradation characteristics after use or the digestive properties after consumption, thus needing to comprehensively evaluate the quality of starch-based food packaging materials. This review summarizes the degradation behavior of the starch-based film in different degradation environments, and compares the suitability of degradation environments. Besides, the physicochemical properties of the composite or blend film during the degradation process were further discussed. The factors affecting the digestibility of starch-based edible film were reviewed and analyzed. Finally, the application and the future trend of the biodegradable starch-based film in the food packaging field were proposed. Future studies should combine and evaluate the physical properties and biodegradability of the composite/blend film, to develop food packaging materials with good characteristics and biodegradability.


Assuntos
Filmes Comestíveis , Embalagem de Alimentos , Amido/química , Alimentos
19.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589389

RESUMO

The demand for clean-label starch, perceived as environmentally friendly in terms of production and less hazardous to health, has driven the advancement of food physical processing technologies aimed at modifying starch. One of the key objectives of these modifications has been to reduce the glycaemic potency and increase resistant starch content of starch, as these properties have the potential to positively impact metabolic health. This review provides a comprehensive overview of recent updates in typical physical processing techniques, including annealing, heat-moisture, microwave and ultrasonication, and a brief discussion of several promising recent-developed methods. The focus is on evaluating the molecular, supramolecular and microstructural changes resulting from these modifications and identifying targeted structures that can foster enzyme-digestion resistance in native starch and its forms relevant to food applications. After a comprehensive search and assessment, the current physical modifications have not consistently improved starch enzymatic resistance. The opportunities for enhancing the effectiveness of modifications lie in (1) identifying modification conditions that avoid the intensive disruption of the granular and supramolecular structure of starch and (2) exploring novel strategies that incorporate multi-type modifications.

20.
Crit Rev Food Sci Nutr ; 63(23): 6412-6422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35075962

RESUMO

Current definition of resistant starch (RS) types is largely based on their interactions with digestive enzymes from human upper gastrointestinal tract. However, this is frequently inadequate to reflect their effects on the gut microbiota, which is an important mechanism for RS to fulfill its function to improve human health. Distinct shifts of gut microbiota compositions and alterations of fermented metabolites could be resulted by the consumption of RS from the same type. This review summarized these defects from the current definitions of RS types, while more importantly proposed pioneering concepts for new definitions of RS types from the gut microbiota perspectives. New RS types considered the aspects of RS fermentation rate, fermentation end products, specificity toward gut microbiota and shifts of gut microbiota caused by the consumption of RS. These definitions were depending on the known outcomes from RS-gut microbiota interactions. The application of new RS types in understanding the complex RS-gut microbiota interactions and promoting human health should be focused in the future.


Assuntos
Microbioma Gastrointestinal , Humanos , Amido Resistente/metabolismo , Amido/metabolismo , Fermentação , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA