Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Trends Biochem Sci ; 46(8): 630-639, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33509650

RESUMO

Lysosomal degradation of endoplasmic reticulum (ER) fragments by autophagy, termed ER-phagy or reticulophagy, occurs under normal as well as stress conditions. The recent discovery of multiple ER-phagy receptors has stimulated studies on the roles of ER-phagy. We discuss how the ER-phagy receptors and the cellular components that work with these receptors mediate two important functions: ER homeostasis and ER quality control. We highlight that ER-phagy plays an important role in alleviating ER expansion induced by ER stress, and acts as an alternative disposal pathway for misfolded proteins. We suggest that the latter function explains the emerging connection between ER-phagy and disease. Additional ER-phagy-associated functions and important unanswered questions are also discussed.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Autofagia , Estresse do Retículo Endoplasmático , Homeostase
2.
Trends Biochem Sci ; 45(4): 347-364, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32044127

RESUMO

Autophagy is an evolutionarily conserved process whereby damaged and redundant components of the cell are degraded in structures called autophagolysosomes. Currently, three main types of autophagy are recognized: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). However, we still know little about some specific types of autophagy that are linked to various intracellular compartments and their roles in the physiology of the whole organism and connections to various diseases. Here, we aim to shed light on the latest insights on and mechanisms of several selective forms of autophagy.


Assuntos
Autofagia , Animais , Humanos , Lisossomos/química , Lisossomos/metabolismo , Lisossomos/patologia
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769070

RESUMO

Female infertility is caused by premature ovarian failure (POF), which is triggered by the endoplasmic reticulum (ER) stress-mediated apoptosis of granulosa cells. The ER unfolded protein response (UPRer) is initiated to promote cell survival by alleviating excessive ER stress, but cellular apoptosis is induced by persistent or strong ER stress. Recent studies have reported that reticulophagy is initiated by ER stress. Whether reticulophagy is activated in the ER stress-mediated apoptosis of granulosa cells and which pathway is initiated to activate reticulophagy during the apoptosis of granulosa cells are unknown. Therefore, the role of reticulophagy in granulosa cell death and the relationship between ER stress and reticulophagy were investigated in this work. Our results suggest that the ER stress inducer tunicamycin causes POF in mice, which is attributed to the apoptosis of granulosa cells and is accompanied by the activation of UPRer and reticulophagy. Furthermore, granulosa cells were treated with tunicamycin, and granulosa cell apoptosis was triggered and increased the expression of UPRer and reticulophagy molecules. The expression of ATF4 was then downregulated by RNAi, which decreased the levels of autophagy and the reticulophagy receptor CCGP1. Furthermore, ATF4 targets MAP1LC3A, as revealed by the ChIP sequencing results, and co-IP results demonstrated that MAP1LC3A interacts with CCPG1. Therefore, reticulophagy was activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway to mitigate ER stress. Additionally, the role of reticulophagy in granulosa cells was investigated by the knockdown of CCPG1 with RNAi. Interestingly, only a small number of granulosa cells died by apoptosis, whereas the death of most granulosa cells occurred by necroptosis triggered by STAT1 and STAT3 to impair ER proteostasis and the ER protein quality control system UPRer. Taken together, the results indicate that the necroptosis of granulosa cells is triggered by up- and downregulating the reticulophagy receptor CCPG1 through STAT1/STAT3-(p)RIPK1-(p)RIPK3-(p)MLKL and that reticulophagy is activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway.


Assuntos
Estresse do Retículo Endoplasmático , Necroptose , Feminino , Camundongos , Animais , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas , Autofagia/genética , Apoptose , Células da Granulosa
4.
J Cell Physiol ; 237(4): 2230-2248, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128666

RESUMO

Cardiac hypertrophy is a leading cause of cardiac morbidity and mortality worldwide. Apelin is the endogenous ligand for the G protein-coupled receptor, APJ. Previously, we have revealed that apelin-13 can induce cardiomyocyte hypertrophy by activating the autophagy pathway. However, the precise mechanism through which apelin-13 regulates reticulophagy to participate in cardiomyocyte hypertrophy remains unclear. Herein, we observed that apelin-13-induced cardiomyocyte hypertrophy by activating FAM134B-dependent reticulophagy via the Pannexin-1/P2X7 signal pathway. Furthermore, we found that apelin-13 stimulated the opening of Pannexin-1 hemichannel and increased extracellular ATP (eATP) levels, which activated the P2X7 purinergic receptor. Activation of the Pannexin-1/eATP/P2X7 axis subsequently led to FAM134B-dependent reticulophagy. Moreover, inhibition of the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy reversed apelin-13-induced cardiomyocyte hypertrophy. Based on our present findings, apelin-13/APJ induces cardiomyocyte hypertrophy by activating the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Miócitos Cardíacos , Autofagia , Cardiomegalia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miócitos Cardíacos/metabolismo
5.
Biochem Biophys Res Commun ; 589: 247-253, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34929448

RESUMO

Ferroptosis is a kind of cell death closely related to selective autophagy, such as ferritinophagy, lipophagy, clockophagy and chaperone-mediated autophagy. However, the role of reticulophagy, which specifically degrades endoplasmic reticulum (ER) fragments (also known as ER-phagy), in ferroptosis regulation is still unclear. In this study, we found that sorafenib (ferroptosis inducer) can effectively activate the receptor protein FAM134B-mediated ER-phagy, and FAM134B knockdown not only blocked ER-phagy but also significantly strengthened cellular sensitivity to ferroptosis without affecting macroautophagy. In vivo experiments also yielded similar results. These evidences provided new clues for ferroptosis regulation. Subsequently, bioinformatic analysis combined with RNA binding protein immunoprecipitation and polyribosome fractionation preliminarily indicated that PABPC1 can interact with FAM134B mRNA and promote its translation. Taken together, this study revealed the role of the PABPC1-FAM134B-ER-phagy pathway on ferroptosis, providing important evidence for novel anti-cancer strategies.


Assuntos
Autofagia , Carcinoma Hepatocelular/metabolismo , Ferroptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Sorafenibe/farmacologia , Animais , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína I de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
6.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408965

RESUMO

Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.


Assuntos
Doença de Alzheimer , Macroautofagia , Doença de Alzheimer/patologia , Autofagia/fisiologia , Humanos , Mitofagia/fisiologia
7.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32102874

RESUMO

Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), rely heavily on the availability of endoplasmic reticulum (ER) membranes throughout their life cycle, and degradation of ER membranes restricts flavivirus replication. Accordingly, DENV and ZIKV restrict ER turnover by protease-mediated cleavage of reticulophagy regulator 1 (RETREG1), also known as FAM134B, an autophagy receptor responsible for targeted ER sheet degradation. Given that the induction of autophagy may play an important role in flavivirus replication, the antiviral role of RETREG1 suggests that specialized autophagic pathways may have differential effects on the flavivirus life cycle. We previously identified BPI fold-containing family B member 3 (BPIFB3) as a regulator of autophagy that negatively controls enterovirus replication. Here, we show that in contrast to enteroviruses, BPIFB3 functions as a positive regulator of DENV and ZIKV infection and that its RNA interference-mediated silencing inhibits the formation of viral replication organelles. Mechanistically, we show that depletion of BPIFB3 enhances RETREG1-dependent reticulophagy, leading to enhanced ER turnover and the suppression of viral replication. Consistent with this, the antiviral effects of BPIFB3 depletion can be reversed by RETREG1 silencing, suggesting a specific role for BPIFB3 in regulating ER turnover. These studies define BPIFB3 as a required host factor for both DENV and ZIKV replication and further contribute to our understanding of the requirements for autophagy during flavivirus infection.IMPORTANCE Flaviviruses and other arthropod-transmitted viruses represent a widespread global health problem, with limited treatment options currently available. Thus, a better understanding of the cellular requirements for their infection is needed. Both DENV and ZIKV rely on expansion of the endoplasmic reticulum (ER) and the induction of autophagy to establish productive infections. However, little is known regarding the interplay between the requirements for autophagy initiation during infection and the mechanisms used by these viruses to avoid clearance through the autophagic pathway. Our study highlights the importance of the host factor BPIFB3 in regulating flavivirus replication and further confirms that the RETREG1-dependent reticulophagy pathway is antiviral to both DENV and ZIKV.


Assuntos
Proteínas de Transporte/metabolismo , Flavivirus/fisiologia , Replicação Viral/fisiologia , Autofagia , Proteínas de Transporte/fisiologia , Linhagem Celular , Vírus da Dengue/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/virologia , Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Interferência de RNA , Zika virus/fisiologia , Infecção por Zika virus/virologia
8.
J Biol Chem ; 294(52): 20009-20023, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31748416

RESUMO

Autophagy is typically a prosurvival cellular process that promotes the turnover of long-lived proteins and damaged organelles, but it can also induce cell death. We have previously reported that the small molecule Z36 induces autophagy along with autophagic cell death in HeLa cells. In this study, we analyzed differential gene expression in Z36-treated HeLa cells and found that Z36-induced endoplasmic reticulum-specific autophagy (ER-phagy) results in ER stress and the unfolded protein response (UPR). This result is in contrast to the common notion that autophagy is generally activated in response to ER stress and the UPR. We demonstrate that Z36 up-regulates the expression levels of FAM134B, LC3, and Atg9, which together mediate excessive ER-phagy, characterized by forming increased numbers of autophagosomes with larger sizes. We noted that the excessive ER-phagy accelerates ER degradation and impairs ER homeostasis and thereby triggers ER stress and the UPR as well as ER-phagy-dependent cell death. Interestingly, overexpression of FAM134B alone in HeLa cells is sufficient to impair ER homeostasis and cause ER stress and cell death. These findings suggest a mechanism involving FAM134B activity for ER-phagy to promote cell death.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Resposta a Proteínas não Dobradas , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Células HeLa , Humanos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G733-G747, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052704

RESUMO

Selective autophagy of the endoplasmic reticulum (ER), namely ER-phagy, is mediated by ER-localized receptors, which are recognized and sequestered by GABARAP/LC3B-decorated phagophores and transferred to lysosomes for degradation. Being one such receptor, FAM134B plays critical roles in cellular processes such as protein quality control and neuronal survival. FAM134B has also been associated with different cancers, although its exact role remains elusive. We report here that the FAM134B gene encodes not one but at least two different protein isoforms: the full-length and the NH2 terminally truncated forms. Their relative expression shows extreme variation, both within normal tissues and among cancer types. Expression of full-length FAM134B is restricted to the brain, testis, spleen, and prostate. In contrast, NH2 terminally truncated FAM134B is dominant in the heart, skeletal muscle, kidney, pancreas, and liver. We compared wild-type and knockout mice to study the role of the Fam134b gene in starvation. NH2 terminally truncated FAM134B-2 was induced in the liver, skeletal muscle, and heart but not in the pancreas and stomach following starvation. Upon starvation, Fam134b-/- mice differed from wild-type mice by less weight loss and less hyperaminoacidemic and hypocalcemic response but increased levels of serum albumin, total serum proteins, and α-amylase. Interestingly, either NH2 terminally truncated FAM134B or both isoforms were downregulated in liver, lung, and colon cancers. In contrast, upregulation was observed in stomach and chromophobe kidney cancers.NEW & NOTEWORTHY We reported tissues expressing FAM134B-2 such as the kidney, muscle, heart, and pancreas, some of which exhibit stimulated expression upon nutrient starvation. We also demonstrated the effect of Fam134b deletion during ad libitum and starvation conditions. Resistance to weight loss and hypocalcemia, accompanied by an increase in serum albumin and α-amylase levels, indicate critical roles of Fam134b in physiology. Furthermore, the differential expression of FAM134B isoforms was shown to be significantly dysregulated in human cancers.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Neoplasias/genética , Neoplasias/metabolismo , Adulto , Animais , Autofagia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Isomerismo , Masculino , Camundongos , Camundongos Knockout , Inanição/metabolismo , Distribuição Tecidual
10.
J Biomed Sci ; 27(1): 27, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959174

RESUMO

Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family. It is an arbovirus that can cause congenital abnormalities and is sexually transmissible. A series of outbreaks accompanied by unexpected severe clinical complications have captured medical attention to further characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. Endoplasmic reticulum (ER) and ER-related proteins are essential in ZIKV genome replication. This review highlights the subcellular localization of ZIKV to the ER and ZIKV modulation on the architecture of the ER. This review also discusses ZIKV interaction with ER proteins such as signal peptidase complex subunit 1 (SPCS1), ER membrane complex (EMC) subunits, and ER translocon for viral replication. Furthermore, the review covers several important resulting effects of ZIKV infection to the ER and cellular processes including ER stress, reticulophagy, and paraptosis-like death. Pharmacological targeting of ZIKV-affected ER-resident proteins and ER-associated components demonstrate promising signs of combating ZIKV infection and rescuing host organisms from severe neurologic sequelae.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/virologia , Replicação Viral/fisiologia , Infecção por Zika virus/virologia , Humanos , Proteínas de Membrana/metabolismo
11.
Cytometry A ; 95(6): 672-682, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30451364

RESUMO

The mechanistic link between ER stress, autophagy, and resultant cell death was investigated by the use of drugs Thapsigargin (Tg) and Chloroquine (CQ) with prior induction and or blockade of autophagy and apoptosis which modulated the ER stress response and resultant form of cell death. All these biological processes can be measured flow cytometrically allowing the determination of the type of cell death, G1 cell cycle arrest, cell cycle dependent measurement of ER stress transducer PERK, misfolded proteins, reticulophagy, and autophagy marker LC3B. Jurkat cells after Tg or CQ treatment became necrotic and apoptotic, showed G1 cell cycle arrest, autophagy, and ER stress. Prior induction of autophagy before ER stress increased levels of necrotic and apoptotic cell death. Autophagy was further up-regulated, while PERK was reduced or abrogated. CQ showed reduced levels of misfolded proteins and reticulophagy, while Tg showed no change in misfolded protein levels but increased reticulophagy and thus displayed more ER stress. Prior blockade of apoptosis before induction of ER stress resulted in cell survival except with high Tg levels which induced necrosis. Autophagy was up-regulated with modulation of PERK and reticulophagy levels with an abrogation of the misfolded protein response. Blockade of apoptosis with induction of autophagy before ER stress showed death by necrosis with high dose drugs and cell survival with low doses of drugs. CQ induced reduced levels G1 cell cycle arrest while it was maintained with Tg. Autophagy was also maintained with reduced levels of ER stress. These data demonstrates a profound link between the processes of ER stress, autophagy, and the resultant form of cell death all of which can be modulated depending upon the sequence and concentration of drugs employed. © 2018 International Society for Advancement of Cytometry.


Assuntos
Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cloroquina/farmacologia , Estresse do Retículo Endoplasmático/genética , Citometria de Fluxo/métodos , Imunofluorescência , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Células Jurkat , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Necrose/metabolismo , Oligopeptídeos/farmacologia , Sirolimo/farmacologia , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética
12.
Autophagy ; 20(1): 210-211, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651691

RESUMO

Reticulophagy is an evolutionarily conserved mechanism essential to maintain the endoplasmic reticulum (ER) homeostasis. A series of studies identified a panel of reticulophagy receptors. However, it remains unclear how these receptors sense upstream signals for spatiotemporal control of reticulophagy and how ER is fragmented into small pieces for sequestration into phagophores. Recently, we and others showed that the oligomerization of RETREG1/FAM134B (reticulophagy regulator 1), an reticulophagy receptor, triggers the scission of ER membrane to facilitate reticulophagy. Furthermore, we demonstrated that upstream signals are transduced by sequential phosphorylation and acetylation of RETREG1, which stimulate its oligomerization, ER fragmentation and reticulophagy. Our work provides further mechanistic insights into how reticulophagy receptor conveys cellular signals to fine-tune of ER homeostasis.Abbreviations: ER, endoplasmic reticulum; MAP1LC3, microtubule-associated protein light chain 3; RETREG1, reticulophagy regulator 1; RHD, reticulon-homology domain.


Assuntos
Autofagia , Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Autofagossomos/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
13.
Autophagy ; 20(3): 712-713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054642

RESUMO

Reticulophagy is a selective autophagy of the endoplasmic reticulum (ER) mediated by cargo receptors. It plays a crucial role in ER quality control, yet the mechanisms that initiate reticulophagy remain poorly understood. Our study identified the multifunctional protein UVRAG (UV radiation resistance associated gene) as a novel regulator of reticulophagy. UVRAG interacts with sheet and tubular reticulophagy receptors, regulates the oligomerization of receptors and facilitates their interaction with LC3/GABARAP, critical for ER fragmentation and autophagosome targeting. Remarkably, we found that UVRAG's function in reticulophagy initiation is independent of its traditional role in macroautophagy. Furthermore, UVRAG enhances the degradation of ER-associated mutant proteins linked to diseases like diabetes. Our findings offer insights into the mechanisms of reticulophagy initiation and highlight UVRAG's therapeutic potential in ER-related diseases.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Proteínas de Transporte/metabolismo
14.
Phytomedicine ; 134: 155958, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39241385

RESUMO

BACKGROUND: Maintaining intracellular equilibrium is essential for the viability of tumor cells, which tend to be particularly vulnerable to environmental stressors. Consequently, targeting the disruption of this homeostasis offers a promising approach for oncological treatments. LW-213, a novel derivative of wogonin, effectively induces apoptosis in cancer cells by initiating endoplasmic reticulum (ER) stress, although the precise molecular pathways involved remain intricate and multifaceted. PURPOSE: This research aimed to explore how LW-213 prompts apoptosis in non-small cell lung cancer (NSCLC) cells and to clarify the detailed mechanisms that govern this process. METHODS: Various NSCLC cell lines were utilized to delineate the apoptotic effects induced by LW-213. Advanced methodologies, including RNA sequencing (RNA-seq), Western blotting (WB), immunofluorescence (IF), immunoprecipitation (IP), flow cytometry (Fc), real-time quantitative polymerase chain reaction (RT-qPCR), and electron microscopy, were employed to investigate the underlying molecular interactions. The efficacy and mechanistic action of LW-213 were also assessed in a xenograft model using nude mice. RESULTS: We demonstrated that LW-213, a small molecule cationic amphiphilic drug (CAD), inhibited Niemann-Pick C1 (NPC1) function and induced lysosomal membrane damage, thereby activating the phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway. This activation promoted cholesterol transport from the ER to the lysosome, perpetuating a cholesterol-deficient state in the ER, including massive exocytosis of Ca2+ and activation of FAM134B-mediated reticulophagy. Ultimately, excessive reticulophagy induced lethal ER stress. CONCLUSIONS: In summary, our study elucidates an organelle domino reaction initiated by lysosome damage and a series of self-rescue mechanisms that eventually lead to irreversible lethal effects, revealing a potential drug intervention strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Estresse do Retículo Endoplasmático , Flavanonas , Neoplasias Pulmonares , Lisossomos , Camundongos Nus , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Flavanonas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Proteína C1 de Niemann-Pick , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Autofagia/efeitos dos fármacos , Flavonoides
15.
Sci Rep ; 14(1): 25532, 2024 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-39462136

RESUMO

The acetylation of autophagy protein 9 A (ATG9A) in the lumen of the endoplasmic reticulum (ER) by ATase1 and ATase2 regulates the induction of reticulophagy. Analysis of the ER-specific ATG9A interactome identified calreticulin (CALR), an ER luminal Ca+2-binding chaperone, as key for ATG9A activity. Specifically, if acetylated, ATG9A is sequestered by CALR and prevented from engaging FAM134B and SEC62. Under this condition, ATG9A is unable to activate the autophagy core machinery. In contrast, when non-acetylated, ATG9A is released by CALR and able to engage FAM134B and SEC62. In this study, we report that Ca+2 dynamics across the ER membrane regulate the ATG9A-CALR interaction as well as the ability of ATG9A to trigger reticulophagy. We show that the Ca+2-binding sites situated on the C-domain of CALR are essential for the ATG9A-CALR interaction. Finally, we show that K359 and K363 on ATG9A can influence the ATG9A-CALR interaction. Collectively, our results disclose a previously unidentified aspect of the complex mechanisms that regulate ATG9A activity. They also offer a possible area of intersection between Ca+2 metabolism, acetyl-CoA metabolism, and ER proteostasis.


Assuntos
Proteínas Relacionadas à Autofagia , Cálcio , Calreticulina , Retículo Endoplasmático , Lisina , Proteínas de Membrana , Proteínas de Transporte Vesicular , Calreticulina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Acetilação , Humanos , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Lisina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Ligação Proteica , Autofagia , Células HEK293
16.
Autophagy ; 20(5): 1197-1198, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163952

RESUMO

Under stress conditions, the endoplasmic reticulum and nucleus undergo turnover through selective macroautophagy/autophagy processes termed reticulophagy and nucleophagy, respectively. Our recent study has identified the protein Hva22/Rop1/Yep1, a member of the REEP1-REEP4 subfamily of the REEP protein family, as an essential factor for both processes in the fission yeast Schizosaccharomyces pombe. In the absence of Hva22/Yep1, reticulophagy and nucleophagy cargos without surrounding autophagic membranes accumulate in the cytoplasm. Interestingly, human proteins in the REEP1-REEP4 subfamily can functionally substitute for Hva22/Yep1 to facilitate reticulophagy. Phylogenetic and synteny analyses further reveal that the budding yeast reticulophagy receptor Atg40 is also a REEP1-REEP4 subfamily member. Similar to human REEP1-REEP4 subfamily proteins, Atg40 can functionally replace Hva22/Yep1. Based on our findings, we propose that promoting reticulophagy is a conserved function of REEP1-REEP4 subfamily proteins.


Assuntos
Autofagia , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Humanos , Autofagia/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Macroautofagia/fisiologia
17.
Autophagy ; : 1-18, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39394962

RESUMO

All viruses are obligate intracellular parasites that use host machinery to synthesize viral proteins. In infected eukaryotes, viral secreted and transmembrane proteins are synthesized at the endoplasmic reticulum (ER). Many viruses refashion ER membranes into bespoke factories where viral products accumulate while evading host pattern recognition receptors. ER processes are tightly regulated to maintain cellular homeostasis, so viruses must either conform to ER regulatory mechanisms or subvert them to ensure efficient viral replication. Reticulophagy is a catabolic process that directs lysosomal degradation of ER components. There is accumulating evidence that reticulophagy serves as a form of antiviral defense; we call this defense "xERophagy" to acknowledge its relationship to xenophagy, the catabolic degradation of microorganisms by macroautophagy/autophagy. In turn, viruses can subvert reticulophagy to suppress host antiviral responses and support efficient viral replication. Here, we review the evidence for functional interplay between viruses and the host reticulophagy machinery.Abbreviations: AMFR: autocrine motility factor receptor; ARF4: ADP-ribosylation factor 4; ARL6IP1: ADP-ribosylation factor-like 6 interacting protein 1; ATL3: atlastin GTPase 3; ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; BPIFB3: BPI fold containing family B, member 3; CALCOCO1: calcium binding and coiled coil domain 1; CAMK2B: calcium/calmodulin-dependent protein kinase II, beta; CANX: calnexin; CDV: canine distemper virus; CCPG1: cell cycle progression 1; CDK5RAP3/C53: CDK5 regulatory subunit associated protein 3; CIR: cargo-interacting region; CoV: coronavirus; CSNK2/CK2: casein kinase 2; CVB3: coxsackievirus B3; DAPK1: death associated protein kinase 1; DENV: dengue virus; DMV: double-membrane vesicles; EBOV: Ebola virus; EBV: Epstein-Barr Virus; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMCV: encephalomyocarditis virus; EMV: extracellular microvesicle; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signalling 1; EV: extracellular vesicle; EV71: enterovirus 71; FIR: RB1CC1/FIP200-interacting region; FMDV: foot-and-mouth disease virus; HCMV: human cytomegalovirus; HCV: hepatitis C virus; HMGB1: high mobility group box 1; HSPA5/BiP: heat shock protein 5; IFN: interferon; IFNG/IFN-γ: interferon gamma; KSHV: Kaposi's sarcoma-associated herpesvirus; LIR: MAP1LC3/LC3-interacting region; LNP: lunapark, ER junction formation factor; MAP1LC3: microtubule-associated protein 1 light chain 3; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK/JNK: mitogen-activated protein kinase; MeV: measles virus; MHV: murine hepatitis virus; NS: non-structural; PDIA3: protein disulfide isomerase associated 3; PRR: pattern recognition receptor; PRRSV: porcine reproductive and respiratory syndrome virus; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHD: reticulon homology domain; RTN3: reticulon 3; RTN3L: reticulon 3 long; sAIMs: shuffled Atg8-interacting motifs; SARS-CoV: severe acute respiratory syndrome coronavirus; SINV: Sindbis virus; STING1: stimulator of interferon response cGAMP interactor 1; SVV: Seneca Valley virus; SV40: simian virus 40; TEX264: testis expressed gene 264 ER-phagy receptor; TFEB: transcription factor EB; TRAF2: TNF receptor-associated factor 2; UIM: ubiquitin-interacting motif; UFM1: ubiquitin-fold modifier 1; UPR: unfolded protein response; VAPA: vesicle-associated membrane protein, associated protein A; VAPB: vesicle-associated membrane protein, associated protein B and C; VZV: varicella zoster virus; WNV: West Nile virus; XBP1: X-box binding protein 1; XBP1s: XBP1 spliced; xERophagy: xenophagy involving reticulophagy; ZIKV: Zika virus.

18.
Autophagy ; : 1-16, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39245437

RESUMO

Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require de novo protein synthesis. Historically, autophagy has been regarded as nonselective; however, it is now clear that different stimuli can lead to the selective degradation of cellular components via selective autophagy receptors (SARs). Due to its selective nature and the existence of multiple degradation pathways potentially acting in concert, monitoring of autophagy flux, i.e. selective autophagy-dependent protein degradation, should address this complexity. Here, we introduce a targeted proteomics approach monitoring abundance changes of 37 autophagy-related proteins covering process-relevant proteins such as the initiation complex and the Atg8-family protein lipidation machinery, as well as most known SARs. We show that proteins involved in autophagosome biogenesis are upregulated and spared from degradation under autophagy-inducing conditions in contrast to SARs, in a cell-line dependent manner. Classical bulk stimuli such as nutrient starvation mainly induce degradation of ubiquitin-dependent soluble SARs and not of ubiquitin-independent, membrane-bound SARs. In contrast, treatment with the iron chelator deferiprone leads to the degradation of ubiquitin-dependent and -independent SARs linked to mitophagy and reticulophagy/ER-phagy. Our approach is automatable and supports large-scale screening assays paving the way to (pre)clinical applications and monitoring of specific autophagy flux.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; ATG: autophagy related; BafA1: bafilomycin A1; BNIP1: BCL2 interacting protein 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3-like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCPG1: cell cycle progression 1; CV: coefficients of variations; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DFP: deferiprone; ER: endoplasmic reticulum; FKBP8: FKBP prolyl isomerase 8; GABARAPL: GABA type A receptor associated protein like; LC: liquid chromatography; LOD: limit of detection; LOQ: limit of quantification; MAP1LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NCOA4: nuclear receptor coactivator 4; NBR1: NBR1 autophagy cargo receptor; NUFIP1: nuclear FMR1 interacting protein 1; OPTN: optineurin; PHB2: prohibitin 2; PNPLA2/ATGL: patatin like phospholipase domain containing 2; POI: protein of interest; PTM: posttranslational modification; PRM: parallel reaction monitoring; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RPS6KB1: ribosomal protein S6 kinase B1; RTN3: reticulon 3; SARs: selective autophagy receptors; SQSTM1/p62: sequestosome 1; STBD1: starch binding domain 1; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TNIP1: TNFAIP3 interacting protein 1; TOLLIP: toll interacting protein; ULK1: unc-51 like autophagy activating kinase 1; WBP2: WW domain binding protein 2; WDFY3/Alfy: WD repeat and FYVE domain containing 3; WIPI2: WD repeat domain, phosphoinositide interacting 2.

19.
Autophagy ; : 1-21, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39394963

RESUMO

Prion disease is a fatal and infectious neurodegenerative disorder caused by the trans-conformation conversion of PRNP/PrPC to PRNP/PrPSc. Accumulated PRNP/PrPSc-induced ER stress causes chronic unfolded protein response (UPR) activation, which is one of the fundamental steps in prion disease progression. However, the role of various ER-resident proteins in prion-induced ER stress is elusive. This study demonstrated that ARL6IP5 is compensatory upregulated in response to chronically activated UPR in the cellular prion disease model (RML-ScN2a). Furthermore, overexpression of ARL6IP5 overcomes ER stress by lowering the expression of chronically activated UPR pathway proteins. We discovered that ARL6IP5 induces reticulophagy to reduce the PRNP/PrPSc burden by releasing ER stress. Conversely, the knockdown of ARL6IP5 leads to inefficient macroautophagic/autophagic flux and elevated PRNP/PrPSc burden. Our study also uncovered that ARL6IP5-induced reticulophagy depends on Ca2+-mediated AMPK activation and can induce 3 MA-inhibited autophagic flux. The detailed mechanistic study revealed that ARL6IP5-induced reticulophagy involves interaction with soluble reticulophagy receptor CALCOCO1 and lysosomal marker LAMP1, leading to degradation in lysosomes. Here, we delineate the role of ARL6IP5 as a novel ER stress regulator and reticulophagy inducer that can effectively reduce the misfolded PRNP/PrPSc burden. Our research opens up a new avenue of selective autophagy in prion disease and represents a potential therapeutic target.Abbreviations: ARL6IP5: ADP ribosylation factor-like GTPase 6 interacting protein 5; AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; CALCOCO1: calcium binding and coiled-coil domain 1; CQ: chloroquine; DAPI: 4'6-diamino-2-phenylindole; ER: endoplasmic reticulum; ERPHS: reticulophagy/ER-phagy sites; KD: knockdown; KD-CON: knockdown control; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MßCD: methyl beta cyclodextrin; 3 MA: 3-methyladenine; OE: overexpression; OE-CON: empty vector control; PrDs: prion diseases; PRNP/PrPC: cellular prion protein (Kanno blood group); PRNP/PrPSc: infectious scrapie misfolded PRNP; Tm: tunicamycin; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.

20.
Autophagy ; 20(9): 2105-2106, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38597191

RESUMO

Proteostasis of the endoplasmic reticulum (ER) is maintained by coordinated action of two major catabolic pathways: proteasome-dependent ER-associated degradation (ERAD) and less characterized lysosomal pathways. Recent studies on ER-specific autophagy (termed "reticulophagy") have highlighted the importance of lysosomes for ER proteostasis. Key to this process are proteins termed reticulophagy receptors that connect ER fragments and Atg8-family proteins, facilitating the lysosomal degradation of both native and aberrant ER proteins in a relatively nonselective manner. In contrast, our recent work identified TOLLIP as a novel type of cargo receptor specifically dedicated to the lysosomal degradation of aberrant ER membrane proteins. The clients of TOLLIP include an engineered model substrate, which mimics an ER-retained aberrant membrane protein, and motor neuron disease-linked misfolded mutants of VAPB and BSCL2/Seipin. TOLLIP acts as a receptor to connect these aberrant ER membrane proteins and phosphatidylinositol-3-phosphate (PtdIns3P) by recognizing the former through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain, and the latter through its C2 domain. These interactions enable PtdIns3P-dependent vesicular trafficking of aberrant membrane proteins to lysosomes without promoting reticulophagic turnover of bulk ER.


Assuntos
Autofagia , Retículo Endoplasmático , Animais , Humanos , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA