RESUMO
In allogeneic hematopoietic cell transplant (HCT)-recipients, prophylactic management strategies are essential for preventing CMV-reactivation and associated disease. We report on a 63-year-old male patient with a D-/R+ CMV-serostatus, who showed ongoing low-level CMV-replication post-HCT despite receiving letermovir prophylaxis. Sanger-sequencing failed to detect drug resistance mutations (DRM) until CMV-pneumonitis developed, revealing a UL56-C325R-DRM linked to high-level letermovir resistance. Retrospective analysis with next-generation-sequencing (NGS) revealed the DRM at a low frequency of 6% two weeks prior to detection by Sanger-sequencing. This study highlights the importance of advanced NGS-methods for early detection of CMV-DRMs, allowing for faster adjustments in antiviral treatment strategies.
RESUMO
Phage display has been widely used to identify peptides binding to a variety of biological targets. In the current work, we planned to select novel peptides targeting CD4 through screening of a commercial phage display library (New England Biolabs Ph.D.TM-7). After three rounds of biopanning, 57 phage clones were Sanger-sequenced. These clones represented 30 unique peptide sequences, which were subjected to phage ELISA, resulting in the identification of two potential target binders. Following peptide synthesis, downstream characterization was conducted using fluorescence plate-based assay, flow cytometry, SPR, and confocal microscopy. The results revealed that neither of the peptides identified in the Sanger-based phage display selection exhibited specific binding toward CD4. The naïve library and the phage pool recovered from the third round of biopanning were then subjected to next-generation sequencing (NGS). The results of NGS indicated corruption of the selection output by a phage already known as a fast-propagating clone whose target-unrelated enrichment can shed light on the misidentification of target-binding peptides through phage display. This work provides an in-depth insight into some of the challenges encountered in peptide phage display selection. Furthermore, our data highlight that NGS, by exploring a broader sequence space and providing a more precise picture of the composition of biopanning output, can be used to refine the selection protocol and avoid misleading the process of ligand identification. We hope that these findings can describe some of the complexities of phage display selection and offer help to fellow researchers who have faced similar situations.
RESUMO
In the past, identification of HLA alleles was limited to sequencing the region of the gene coding for the peptide binding groove, resulting in a lack of sequence information in the HLA database, challenging HLA allele assignment software programs. We investigated full-length sequences of 19 HLA class I and 7 HLA class II alleles, and we extended another 47 HLA class I alleles with sequences of 5' and 3' UTR regions that were all not yet available in the IPD-IMGT/HLA database. We resolved 8638 unknown nucleotides in the coding sequence of HLA class I and 2139 of HLA class II. Furthermore, with full-length sequencing of the 26 alleles, more than 90 kb of sequence information was added to the non-coding sequences, whereas extension of the 47 alleles resulted in the addition of 5.5 kb unknown nucleotides to the 5' UTR and > 31.7 kb to the 3' UTR region. With this information, some interesting features were observed, like possible recombination events and lineage evolutionary origins. The continuing increase in the availability of full-length sequences in the HLA database will enable the identification of the evolutionary origin and will help the community to improve the alignment and assignment accuracy of HLA alleles.
Assuntos
Evolução Biológica , Nucleotídeos , Alelos , Regiões 3' não Traduzidas/genética , Membrana Celular , Nucleotídeos/genéticaRESUMO
Inborn errors of immunity (IEI) are defined as genetic disorders affecting the immune system and resulting in diverse clinical signs and symptoms. Despite the lack of diagnosis and unavailability of IEI estimation in the Pakistani population, consanguinity is exacerbating its prevalence. The current study focuses on severe combined immunodeficiency (SCID) and leukocyte adhesion deficiency type 1 (LAD1). SCID is associated with the life-threatening symptoms developing at post-birth. LAD1 is clinically characterized by recurrent bacterial infections related to the skin, mouth, and respiratory tract owing to impaired leukocytes. Herein, in six consanguineous families, flow cytometry was used to evaluate the patient's immune status. Whole-exome sequencing (WES) was then conducted to search for the causative variations in immunodeficiency genes. Sanger sequencing was used to assess the segregation of the variants with the disorder within the families. Sequence analysis revealed five homozygous variants in four different causative genes. This included four novel nonsense variants in CD70 p.(Thr126Profs*33), CD3e p.(Trp151*), IL7R p.(Val138Ilefs*10), and ITGB2 p.(Ser627Valfs*61), and one previously reported in ITGB2 p.(Cys62*). In one of the families, two variants in two different genes, including DNAH6 p.(Tyr2653His) and NIPAL4 p.(Gly121Ser), were detected in an unclassified patient. All the identified variants were found in a homozygous state in the patient but in a heterozygous state in the available parents. The study will facilitate the diagnosis and management of IEI patients.
Assuntos
Consanguinidade , Síndrome da Aderência Leucocítica Deficitária , Linhagem , Imunodeficiência Combinada Severa , Humanos , Síndrome da Aderência Leucocítica Deficitária/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Masculino , Feminino , Sequenciamento do Exoma , Lactente , Homozigoto , Mutação , Paquistão , Pré-EscolarRESUMO
The rpoB gene has been proposed as a promising phylogenetic marker for bacterial identification, providing theoretically improved species-level resolution compared to the 16S rRNA gene for a range of clinically important taxa. However, its utility in diagnostic microbiology has been limited by the lack of broad-range primers allowing for its amplification from most species with a single PCR assay. Here, we present an assay for broad-range partial amplification and Sanger sequencing of the rpoB gene. To reduce cross-reactivity and allow for rpoB amplification directly from patient samples, primers were based on the dual priming oligonucleotide principle. The resulting amplicon is ~550 base pairs in length and appropriate for species-level identification. Systematic in silico evaluation of a wide selection of taxa demonstrated improved resolution within multiple important genera, including Enterococcus, Fusobacterium, Mycobacterium, Streptococcus, and Staphylococcus species and several genera within the Enterobacteriaceae family. Broad-range rpoB amplification and Sanger sequencing of 115 bacterial isolates provided unambiguous species-level identification for 97 (84%) isolates, as compared to 57 (50%) using a clinical 16S rRNA gene assay. Several unresolved taxonomic matters disguised by the low resolution of the 16S rRNA gene were revealed using the rpoB gene. Using a collection of 33 clinical specimens harboring bacteria and assumed to contain high concentrations of human DNA, the rpoB assay identified the pathogen in 29 specimens (88%). Broad-range rpoB amplification and sequencing provides a promising tool for bacterial identification, improving discrimination between closely related species and making it amenable for use in culture-based and culture-independent diagnostic approaches.
Assuntos
Bactérias , Primers do DNA , RNA Polimerases Dirigidas por DNA , Análise de Sequência de DNA , Humanos , RNA Polimerases Dirigidas por DNA/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Primers do DNA/genética , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas Bacteriológicas/métodos , Reação em Cadeia da Polimerase/métodos , Proteínas de Bactérias/genéticaRESUMO
The whole-genome sequence (WGS) analysis of Aichivirus (AiV) identified in Korea was performed in this study. Using Sanger and Nanopore sequencing, the 8228-nucleotide-long genomic sequence of AiV (OQ121963) was determined and confirmed to belong to genotype A. The full-length genome of OQ121963 consisted of a 7296 nt open reading frame (ORF) that encodes a single polyprotein, and 5' UTR (676 nt) and 3' UTR (256 nt) at 5' and 3' ends, respectively. The ORF consisted of leader protein (L), structural protein P1 (VP0, VP1, and VP3), and nonstructural protein P2 (2A, 2B, and 2C) and P3 (3A, 3B, 3C, and 3D). The secondary structure analysis of the 5' UTR identified only stem-loop C (SL-C) and not SL-A and SL-B. The variable region of the AiV genome was analyzed by MegAlign Pro and reconfirmed by SimPlot analysis using 16 AiV whole genomes known to date. Among the entire regions, structural protein region P1 showed the lowest amino acid identity (96.07%) with reference sequence AB040749 (originated in Japan; genotype A), while the highest amino acid identity (98.26%) was confirmed in the 3D region among nonstructural protein region P2 and P3. Moreover, phylogenetic analysis of the WGS of OQ121963 showed the highest homology (96.96%) with JX564249 (originated in Taiwan; genotype A) and lowest homology (90.14%) with DQ028632 (originated in Brazil; genotype B). Therefore, the complete genome characterization of OQ121963 and phylogenetic analysis of the AiV conducted in this study provide useful information allowing to improve diagnostic tools and epidemiological studies of AiVs.
Assuntos
Genoma Viral , Genótipo , Kobuvirus , Fases de Leitura Aberta , Filogenia , Sequenciamento Completo do Genoma , Genoma Viral/genética , República da Coreia , Humanos , Kobuvirus/genética , Kobuvirus/classificação , Kobuvirus/isolamento & purificação , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/epidemiologia , Regiões 5' não Traduzidas/genética , Adulto , RNA Viral/genética , Regiões 3' não Traduzidas/genéticaRESUMO
Marbach-Rustad progeroid syndrome is an extremely rare disease caused by a heterozygous variant in the LEMD2 gene. To date, only two patients and one LEMD2 pathogenic variant have been reported in Marbach-Rustad progeroid syndrome. Here we describe the third case of Marbach-Rustad progeroid syndrome worldwide, which is also the first case in China. The proband was affected with premature birth, failed to thrive, facial abnormalities, feeding difficulties, skull defects and delayed motor milestones, but had a normal intelligence and speech. Whole exome sequencing (WES) initially did not find a phenotype-causing variant when the proband was 1 year of age. The reanalysis of WES data 4 years later revealed the proband harbored a de novo heterozygous c.1436C>T(p.Ser479Phe) variant in the LEMD2 gene, which is known responsible for Marbach-Rustad progeroid syndrome. Sanger sequencing confirmed the presence of this variant in the proband and absence in his parents and two elder sisters. Our study provides accurate clinical diagnosis for the proband and adds a new patient with Marbach-Rustad progeroid syndrome. Our study suggests the LEMD2 c.1436C>T(p.Ser479Phe) variant as a hotspot. Our work also indicates reanalysis of WES data of negative cases might identify pathogenic variant and improve diagnostic efficiency.
Assuntos
Proteínas de Membrana , Proteínas Nucleares , Humanos , China , Sequenciamento do Exoma , Heterozigoto , Mutação , Fenótipo , Feminino , LactenteRESUMO
Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.
Assuntos
Nanismo , Sequenciamento do Exoma , Mutação , Linhagem , Humanos , Feminino , Masculino , Nanismo/genética , Criança , Paquistão/epidemiologia , Predisposição Genética para Doença , Homozigoto , Fenótipo , Síndrome , Pré-Escolar , Adolescente , Estudos de Associação GenéticaRESUMO
Vacuoles, E1-enzyme, X-linked, Autoinflammatory, Somatic (VEXAS) syndrome is caused by mutations in the UBA1 gene in myeloid precursors, leading to systemic inflammatory manifestations. We present the case of a 75-year-old man presenting with fever, panniculitis, and macrocytic anemia testing repeatedly negative for UBA1 mutations in peripheral blood samples, but ultimately found positive on bone marrow mononuclear cell DNA. The man has been successfully treated with prednisone and methotrexate.
Assuntos
Metotrexato , Enzimas Ativadoras de Ubiquitina , Humanos , Metotrexato/uso terapêutico , Masculino , Idoso , Enzimas Ativadoras de Ubiquitina/genética , Paniculite/tratamento farmacológico , Paniculite/diagnóstico , Anemia Macrocítica/tratamento farmacológico , Anemia Macrocítica/diagnóstico , Anemia Macrocítica/genética , Prednisona/uso terapêutico , Síndrome , Mutação , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnósticoRESUMO
Monozygotic (MZ) twins are theoretically genetically identical. Although they are revealed to accumulate mutations after the zygote splits, discriminating between twin genomes remains a formidable challenge in the field of forensic genetics. Single-nucleotide variants (SNVs) are responsible for a substantial portion of genetic variation, thus potentially serving as promising biomarkers for the identification of MZ twins. In this study, we sequenced the whole genome of a pair of female MZ twins when they were 27 and 33 years old to approximately 30 × coverage using peripheral blood on an Illumina NovaSeq 6000 Sequencing System. Potentially discordant SNVs supported by whole-genome sequencing were validated extensively by amplicon-based targeted deep sequencing and Sanger sequencing. In total, we found nine bona fide post-twinning SNVs, all of which were identified in the younger genomes and found in the older genomes. None of the SNVs occurred within coding exons, three of which were observed in introns, supported by whole-exome sequencing results. A double-blind test was employed, and the reliability of MZ twin discrimination by discordant SNVs was endorsed. All SNVs were successfully detected when input DNA amounts decreased to 0.25 ng, and reliable detection was limited to seven SNVs below 0.075 ng input. This comprehensive analysis confirms that SNVs could serve as cost-effective biomarkers for MZ twin discrimination.
Assuntos
Nucleotídeos , Gêmeos Monozigóticos , Adulto , Feminino , Humanos , Biomarcadores , Mutação , Reprodutibilidade dos Testes , Gêmeos Monozigóticos/genéticaRESUMO
BACKGROUND: Usher syndrome 1 (USH1) is the most severe subtype of Usher syndrome characterized by severe sensorineural hearing impairment, retinitis pigmentosa, and vestibular areflexia. USH1 is usually induced by variants in MYO7A, a gene that encodes the myosin-VIIa protein. Myosin-VIIA is effectively involved in intracellular molecular traffic essential for the proper function of the cochlea, the retinal photoreceptors, and the retinal pigmented epithelial cells. METHODS AND RESULTS: In this study, we report a new homozygous missense variant (NM_000260.4: c.1657 C > T p.(His553Tyr)) in MYO7A of a 28-year-old female with symptoms consistent with USH1. This variant, c.1657 C > T p.(His553Tyr) is positioned in the highly conserved myosin-VIIA motor domain. Previous studies showed that variants in this domain might disrupt the ability of the protein to bind to actin and thus cause the disorder. CONCLUSIONS: Our findings contribute to our understanding of the phenotypic and mutational spectrum of USH1 associated with autosomal recessive MYO7A variants and emphasize the important role of molecular testing in accurately diagnosing this syndrome. More advanced research is required to understand the functional effect of the identified variant and the genotype-phonotype correlations of MYO7A-related Usher syndrome 1.
Assuntos
Homozigoto , Mutação de Sentido Incorreto , Miosina VIIa , Síndromes de Usher , Síndromes de Usher/genética , Miosina VIIa/metabolismo , Miosina VIIa/genética , Humanos , Feminino , Mutação de Sentido Incorreto/genética , Adulto , Miosinas/genética , LinhagemRESUMO
BACKGROUND: Inherited neuromuscular (NMD) and neurodegenerative diseases (NDD) belong to two distinct categories that disturb different components of the nervous system, leading to a variety of different symptoms and clinical manifestations. Both NMD and NDD are a heterogeneous group of genetic conditions. Genetic variations in the SGCA and SIL1 genes have been implicated in causing Limb Girdle Muscular Dystrophy (LGMD), a type of neuromuscular disorder, and Marinesco-Sjögren Syndrome (MSS) which is a neurodegenerative disorder. METHODS: In the present study, we have investigated four patients presenting LGMD and five patients with MSS features. After collecting detailed clinical and family history, necessary laboratory investigations, including estimation of a skeletal muscle marker enzyme serum creatine kinase (CK), nerve conduction study (NCS), electromyography (EMG), echocardiography (Echo), Magnetic resonance imaging (MRI -brain), CT-brain and X-rays were performed. Whole exome followed by Sanger sequencing was employed to search for the disease-causing variants. RESULTS: Physical examination in LGMD patients revealed poor muscle tone and facing difficulty in straightening up from the floor. Clinical history revealed frequent falls and strenuousness in climbing stairs. They started toe-walking in early childhood. Laboratory investigations confirmed elevated CK levels and abnormal NCS and EMG. The MSS patients showed abnormalities in gate and jerking movement, abnormal speech, and strabismus with cataract. MRI-brain showed cerebral atrophy in some MSS patients with elevated CK levels. Whole exome sequencing revealed a nonsense variant [c.C574T, p.(Arg192*)] in the SGCA gene and a frameshift [c.936dupG, p.(Leu313AlaFs*39)] in the SIL1 gene in LGMD and MSS patients, respectively. CONCLUSION: Our study emphasizes the significance of integrating clinical and genetic analyses for precise diagnosis and tailored management strategies in inherited NMD and NDD disorders. To the best of our knowledge, this is the first study documenting SGCA and SIL1 recurrent variants in subcontinent populations with few rare clinical features. The recurrent mutations expanding the global understanding of the mutation's geographic and ethnic distribution and contributing valuable epidemiological data. The study will facilitate genetic counseling for families experiencing similar clinical features, both within Pakistani populations and in other regions.
Assuntos
Sequenciamento do Exoma , Distrofia Muscular do Cíngulo dos Membros , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Masculino , Feminino , Adulto , Sequenciamento do Exoma/métodos , Proteínas Musculares/genética , Linhagem , Mutação/genética , Degenerações Espinocerebelares/genética , Criança , Adolescente , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Adulto Jovem , Exoma/genética , SarcoglicanasRESUMO
BACKGROUND: It is not always easy to find a universal protocol for the extraction of genomic DNA (gDNA) from plants. Extraction of gDNA from plants such as shea with a lot of polysaccharides in their leaves is done in two steps: a first step to remove the polysaccharides and a second step for the extraction of the gDNA. In this work, we designed a protocol for extracting high-quality gDNA from shea tree and demonstrate its suitability for downstream molecular applications. METHODS: Fifty milligrams of leaf and root tissues were used to test the efficiency of our protocol. The quantity of gDNA was measured with the NanoDrop spectrometer and the quality was checked on agarose gel. Its suitability for use in downstream applications was tested with restriction enzymes, SSRs and RAPD polymerase chain reactions and Sanger sequencing. RESULTS: The average yield of gDNA was 5.17; 3.96; 2.71 and 2.41 µg for dry leaves, dry roots, fresh leaves and fresh roots respectively per 100 mg of tissue. Variance analysis of the yield showed significant difference between all tissue types. Leaf gDNA quality was better compared to root gDNA at the absorbance ratio A260/280 and A260/230. The minimum amplifiable concentration of leaf gDNA was 1 pg/µl while root gDNA remained amplifiable at 10 pg/µl. Genomic DNA obtained was also suitable for sequencing. CONCLUSION: This protocol provides an efficient, convenient and cost effective DNA extraction method suitable for use in various vitellaria paradoxa genomic studies.
Assuntos
Genômica , Árvores , Técnica de Amplificação ao Acaso de DNA Polimórfico , DNA , PolissacarídeosRESUMO
BACKGROUND: Severe Combined Immunodeficiency (SCID) is an autosomal recessive inborn error of immunity (IEI) characterized by recurrent chest and gastrointestinal (GI) infections and in some cases associated with life-threatening disorders. METHODOLOGY AND RESULTS: This current study aims to unwind the molecular etiology of SCID and also extended the patients' phenotype associated with identified particular variants. Herein, we present 06 disease-causing variants identified in 07 SCID-patients in three different SCID related genes. Whole Exome Sequencing (WES) followed by Sanger Sequencing was employed to explore genetic variations. The results included identification of two previously reported heterozygous variants in homozygous form for the first time in RAG1gene [(p.Arg410Gln);(p.Arg737His)], followed by a recurrent variant (p.Trp959*) in RAG1, a novel variant in IL2RG (p.Asp48Lfs*24), a recurrent variant in IL2RG (p.Gly271Glu) and a recurrent variant in DCLRE1C (p.Arg191*) gene. CONCLUSION: To conclude, the immune-profiling and WES revealed two novel, two as homozygous state for the first time, and two recurrent disease causing variants contributing valuably to our existing knowledge of SCID.
Assuntos
Imunodeficiência Combinada Severa , Humanos , Imunodeficiência Combinada Severa/genética , Consanguinidade , Paquistão , Homozigoto , Fenótipo , Mutação/genética , LinhagemRESUMO
BACKGROUND: Ocular adnexal B cell lymphoma is the most common orbital malignancy in adults. Large chromosomal translocations and alterations in cell-signaling pathways were frequently reported in lymphomas. Among the altered pathways, perturbations of NFκB signaling play a significant role in lymphomagenesis. Specifically, the MYD88 L265P mutation, an activator of NFκB signaling, is extensively studied in intraocular lymphoma but not at other sites. Therefore, this study aims to screen the MYD88 L265P mutation in Ocular adnexal B cell lymphoma tumors and assess its clinical significance. METHODS AND RESULTS: Our study of twenty Ocular adnexal B cell lymphoma tumor samples by Allele-Specific Polymerase Chain Reaction identified two samples positive for the MYD88 L265P mutation. Subsequent Sanger sequencing confirmed the presence of the heterozygous mutation in those two samples tested positive in Allele-Specific Polymerase Chain Reaction. A comprehensive review of MYD88 L265P mutation in Ocular adnexal B cell lymphoma revealed variable frequencies, ranging from 0 to 36%. The clinical, pathological, and prognostic features showed no differences between patients with and without the MYD88 L265P mutation. CONCLUSION: The present study indicates that the MYD88 L265P mutation is relatively infrequent in our cohort, underscoring the need for further validation in additional cohorts.
Assuntos
Neoplasias Oculares , Linfoma de Células B , Mutação , Fator 88 de Diferenciação Mieloide , Fator 88 de Diferenciação Mieloide/genética , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Linfoma de Células B/genética , Idoso , Neoplasias Oculares/genética , Mutação/genética , Adulto , Alelos , Idoso de 80 Anos ou maisRESUMO
Dravet syndrome is a severe form of epilepsy characterised by recurrent seizures and cognitive impairment. It is mainly caused by variant in the SCN1A gene in 90% of cases, which codes for the α subunit of the voltage-gated sodium channel. In this study, we present one suspected case of Dravet syndrome in Moroccan child that underwent exome analysis and were confirmed by Sanger sequencing. The variant was identified in the SCN1A gene, and is a new variant that has never been described in the literature. The variant was found de nova in our case, indicating that it was not inherited from the parents. The variant, SCN1A c.965-2A>G p.(?), is located at the splice site and results in an unknown modification of the protein. This variant is considered pathogenic on the basis of previous studies. These results contribute to our knowledge of the SCN1A gene mutations associated with Dravet syndrome and underline the importance of genetic analysis in the diagnosis and confirmation of this disorder. Further studies are needed to better understand the functional consequences of this variant and its implications for therapeutic strategies in Dravet syndrome.
Assuntos
Epilepsias Mioclônicas , Epilepsia , Criança , Humanos , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/diagnóstico , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia/genética , Mutação/genética , Análise de Sequência , ConvulsõesRESUMO
Sarcomas characterized by BCOR gene alterations, are a distinct clinico-pathological group of high-grade tumors, that represent 5% of small round cell tumors without EWSR or FUS fusion. Diverse genetic alterations characterize this group, including BCOR-CCNB3 gene fusion being the most common alteration and less frequently internal tandem duplications (ITDs). We present a compelling case of a 3-year-old girl diagnosed with a high-grade nasoethmoidal sarcoma exhibiting BCOR-ITD. The diagnostic process illustrates the histological and immunophenotypic spectrum, requiring an extensive immunohistochemical panel and diverse molecular tests for accurate classification. Additionally, this case highlights the challenges in detecting BCOR-ITDs using different NGS panels, advocating for alternative molecular approaches. Our patient after 10 months since diagnosis is alive with progressive disease. This emphasizes the urgency for ongoing research to refine diagnostic methods and develop effective therapeutic strategies for these rare and aggressive tumors.
RESUMO
Mycobacterium ulcerans ecovar Liflandii (MuLiflandii) was identified as the causative agent of mycobacteriosis in a research colony of Zaire dwarf clawed frogs (Hymenochirus boettgeri) at the University of Michigan. Clinical presentation included lethargy, generalized septicemia, cutaneous granulomas, coelomic effusion, and acute mortality. Identification of the mycobacterial species was based on molecular, microbiological, and histopathologic characteristics. These findings indicate that MuLiflandii is a primary cause of morbidity and mortality in Zaire dwarf clawed frogs and should be considered in the differential diagnosis of sepsis and coelomic effusion in amphibians. Mycobacterial speciation is important given the variability in pathogenesis within the family Mycobacteriaceae and the implications for both animal and human health as potential zoonoses. The Zaire dwarf clawed frog is a species common in the pet trade, and these findings provide consideration for this pathogen as a potentially important public health concern. This is the first report of MuLiflandii infection in the genus Hymenochirus and illustrates the diagnostic challenges of differentiating among both mycolactone-producing mycobacteria and Mycobacterium marinum. Furthermore, we demonstrate the utility of environmental sampling for this pathogen within the tank system, suggesting this mode of sampling could replace the need for direct frog surveillance.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium ulcerans , Animais , Infecções por Mycobacterium não Tuberculosas/veterinária , Infecções por Mycobacterium não Tuberculosas/patologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium ulcerans/isolamento & purificação , Anuros/microbiologiaRESUMO
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Assuntos
Cardiopatias Congênitas , Animais , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Modelos Animais de Doenças , Camundongos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Cultura de Células/métodosRESUMO
Obesity is an important healthcare issue caused by abnormally increased adipose tissue because of energy-intake overcoming energy expenditure. Disturbances in the physiological function of adipose tissue mediate the development of diabetes. It is a metabolic disease that results from decreased insulin-levels and/or changes in the insulin action mechanism. Tumor Necrosis Factor-Associated Apoptosis-Inducing Ligand(TRAIL), which is a member of the Tumor Necrosis Factor(TNF)-family with an important role in adipose tissue biology, is included in many studies with its ability to induce apoptosis in cancer cells, but the number of human-studies conducted on the gene related to its protective-role against diabetes and obesity at this level is insufficient. Our study was carried out as a case and control and included three groups (80 diabetic obese, 80 non-diabetic obese, and 80 healthy individuals as the control group). The Real-Time-PZR(RT-qPZR), and DNA Sanger-Sequencing Methods were used for gene expression and gene squences. As a result of the analyses, TRAIL gene expression level was found to be higher in the controls than in the diabetic-obese and non-diabetic-obese group. This change in TRAIL gene expression suggests that TRAIL maybe a protective factor against diabetes. The presence of rs781673405, rs143353036, rs1244378045, rs767450259, rs759369504, rs750556128, and rs369143448 mutations, which was determined with the Sequencing-Method, was shown for the first time in the present study. In addition, it is the first study in which human TRAIL gene-expression and sequencing were performed together. We believe that these data will make an important contribution to the literature.