Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.142
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2317440121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437532

RESUMO

Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.

2.
Proc Natl Acad Sci U S A ; 121(4): e2313048121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241439

RESUMO

The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.


Assuntos
Neurônios , Tálamo , Camundongos , Animais , Neurônios/fisiologia , Tálamo/fisiologia , Axônios/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia
3.
Nano Lett ; 24(15): 4415-4422, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38577835

RESUMO

The increasing demand for personal protective equipment such as single-use masks has led to large amounts of nondegradable plastic waste, aggravating economic and environmental burdens. This study reports a simple and scalable approach for upcycling waste masks via a chemical vapor deposition technique, realizing a trichome-like biomimetic (TLB) N95 respirator with superhydrophobicity (water contact angle ≥150°), N95-level protection, and reusability. The TLB N95 respirator comprising templated silicone nanofilaments with an average diameter of ∼150 nm offers N95-level protection and breathability comparable to those of commercial N95 respirators. The TLB N95 respirator can still maintain its N95-level protection against particulate matter and viruses after 10 disinfection treatment cycles (i.e., ultraviolet irradiation, microwave irradiation, dry heating, and autoclaving), demonstrating durable reusability. The proposed strategy provides new insight into upcycle waste masks, breaking the existing design and preparation concept of reusable masks.


Assuntos
COVID-19 , Dispositivos de Proteção Respiratória , Humanos , Respiradores N95 , Máscaras , SARS-CoV-2
4.
Small ; 20(34): e2402124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593327

RESUMO

Developing a silicone elastomer with high strength, exceptional toughness, good crack tolerance, healability, and recyclability, poses significant challenges due to the inherent trade-offs between these properties. Herein, the design of silicone-based elastomers with a nanoscopic microphase separation structure and comprehensive mechanical properties is achieved by combining bi-incompatible soft segments and multi-scale hydrogen bonds. The formation of multi-scale hydrogen bonds involving urethane, urea, and 2-ureido-4[1H]-pyrimidinone (UPy) facilitates efficient reversible crosslinking of the synthesized polymer containing thermodynamically incompatible poly(dimethylsiloxane) (PDMS) and poly(propylene glycol) (PPG). The dynamic dissociation and recombination of hydrogen bonds, coupled with the forced compatibility and spontaneous separation of bi-incompatible soft segments, can effectively dissipate energy, particularly in the crack region during the stretching process. The obtained silicone-based elastomer exhibits a high break strength of 8.0 MPa, good elongation at break of 1910%, ultrahigh toughness of 67.8 MJ m-3, and unprecedented fracture energy of 31.8 kJ m-2 while maintaining their thermal stability, hydrophobicity, healability, and recyclability. This resilient and long-lasting silicone-based elastomer exhibits significant potential for use in flexible electronic devices.

5.
Small ; : e2401085, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175118

RESUMO

A droplet microfluidic device to capture in real-time protein aggregation at liquid-liquid interfaces is described. In contrast to conventional methods, typically characterized by a lag time between the application of interfacial stress and the measurement of protein aggregation, here protein adsorption, the formation of a viscoelastic protein layer, aggregation, and shedding of protein particles into solution is simultaneously monitored. The device is applied to analyze the stability of antibody formulations over a wide range of concentrations (1-180 mg mL-1) at the silicone oil (SO)-water interface under controlled mechanical deformation. The adsorption onto oil droplets induces the formation of a viscoelastic protein layer on a subsecond timescale, which progressively restricts the relaxation of the droplets within the chip. Upon mechanical rupture, the protein layer releases particles in solution. The rate of particle formation increases strongly with concentration, similar to the bulk viscosity. Concentrations above 120 mg mL-1 lead to aggregation in seconds and drastically decrease the mechanical perturbations required to shed protein particles in solution. These results are important for the development of formulations at high-protein concentrations (>100 mg mL-1) and indicate that particular attention should be given to interface-induced particle formation in this concentration range. In this context, low-volume microfluidic platforms allow the assessment of protein physical instabilities early in development and represent attractive tools to optimize antibody stability and formulation design consuming limited amounts of material.

6.
Ophthalmology ; 131(6): 731-740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38104666

RESUMO

PURPOSE: To establish whether Densiron 68, a heavier-than-water endotamponade agent, is an effective alternative to conventional light silicone oil in primary rhegmatogenous retinal detachment (RD) surgery for eyes with inferior breaks in the detached retina and severe proliferative vitreoretinopathy (PVR). DESIGN: Cohort study of routinely collected data from the European Society of Retina Specialists and British and Eire Association of Vitreoretinal Surgeons vitreoretinal database between 2015 and 2022. PARTICIPANTS: All consecutive eyes that underwent primary rhegmatogenous RD surgery using Densiron 68 or light silicone oil as an internal tamponade agent. METHODS: To minimize confounding bias, we undertook 2:1 nearest-neighbor matching on inferior breaks, large inferior rhegmatogenous RDs, PVR, and, for visual analyses, baseline visual acuity (VA) between treatment groups. We fit regression models including prognostically relevant covariates, treatment-covariate interactions, and matching weights. We used g-computation with cluster-robust methods to estimate marginal effects. For nonlinear models, we calculated confidence intervals (CIs) using bias-corrected cluster bootstrapping with 9999 replications. MAIN OUTCOME MEASURES: Presence of a fully attached retina and VA at least 2 months after oil removal. RESULTS: Of 1061 eyes enrolled, 426 and 239 were included in our matched samples for anatomic and visual outcome analyses, respectively. The primary success rate was higher in the Densiron 68 group (113 of 142; 80%) compared with the light silicone oil group (180 of 284; 63%), with an adjusted odds ratio of 1.90 (95% CI, 1.63-2.23, P < 0.001). We also observed a significant improvement favoring Densiron 68 of -0.26 logarithm of the minimum angle of resolution (logMAR) in postoperative VA between the 2 groups (95% CI, -0.43 to -0.10, P = 0.002). The anatomic benefit of using Densiron 68 in eyes with inferior retinal breaks and large detachments was more pronounced among eyes with PVR grade C. We found no evidence of visual effect moderation by anatomic outcome or foveal attachment. CONCLUSIONS: Densiron achieved higher anatomic success rates and improved visual outcomes compared with conventional light silicone oil in eyes with inferior retinal pathology and severe PVR. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Tamponamento Interno , Descolamento Retiniano , Óleos de Silicone , Acuidade Visual , Vitrectomia , Humanos , Descolamento Retiniano/cirurgia , Descolamento Retiniano/fisiopatologia , Óleos de Silicone/administração & dosagem , Acuidade Visual/fisiologia , Feminino , Masculino , Pessoa de Meia-Idade , Vitrectomia/métodos , Idoso , Estudos Retrospectivos , Resultado do Tratamento , Vitreorretinopatia Proliferativa/cirurgia , Vitreorretinopatia Proliferativa/fisiopatologia , Estudos de Coortes , Seguimentos
7.
Chemistry ; : e202403116, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292511

RESUMO

Biofouling and corrosion of submerged equipment caused by marine organisms severely restrict the rapid development of the marine industry. Traditional antifouling or anticorrosion coatings typically serve a sole purpose and exhibit limited degradability upon failure, rendering them inadequate for current demands. Herein, a novel imine-functionalized command-degradable bio-based epoxy coating (SAHPEP-DDM) with enhanced integrated antifouling and anticorrosion performances was synthesized utilizing 1,3-bis (3-aminopropyl)-1,1,3,3-tetramethyldisiloxane and syringaldehyde. Compared with commercial epoxy resins (E51-DDM) and polydimethylsiloxanes (PDMS), the SAHPEP-DDM coating exhibits superior antifouling and anticorrosion properties due to the existence of -C=N- and Si-O-Si chain segments in the cross-linking network. The coating shows promising resistance against bacteria, algae and proteins, as well as excellent corrosion resistance in artificial seawater. The coating also exhibits excellent chemical resistance in organic solvents as well as neutral and alkaline environments. Moreover, its controlled degradation after failure can be achieved in acid aqueous solutions through temperature and acidity adjustments, facilitated by the presence of -C=N-. This work presents a novel degradable coating successfully coupled the dual functions of antifouling and anticorrosion coatings, avoiding the employment of intermediate coat, indicating vast potential for application in marine engineering fields.

8.
Int J Legal Med ; 138(4): 1357-1368, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570340

RESUMO

Gunshot wound analysis is an important part of medicolegal practice, in both autopsies and examinations of living persons. Well-established and studied simulants exist that exhibit both physical and biomechanical properties of soft-tissues and bones. Current research literature on ballistic wounds focuses on the biomechanical properties of skin simulants. In our extensive experimental study, we tested numerous synthetic and natural materials, regarding their macromorphological bullet impact characteristics, and compared these data with those from real bullet injuries gathered from medicolegal practice. Over thirty varieties of potential skin simulants were shot perpendicularly, and at 45°, at a distance of 10 m and 0.3 m, using full metal jacket (FMJ) projectiles (9 × 19 mm Luger). Simulants included ballistic gelatine at various concentrations, dental silicones with several degrees of hardness, alginates, latex, chamois leather, suture trainers for medical training purposes and various material compound models. In addition to complying to the general requirements for a synthetic simulant, results obtained from dental silicones shore hardness 70 (backed with 20 % by mass gelatine), were especially highly comparable to gunshot entry wounds in skin from real cases. Based on these results, particularly focusing on the macroscopically detectable criteria, we can strongly recommend dental silicone shore hardness 70 as a skin simulant for wound ballistics examinations.


Assuntos
Balística Forense , Gelatina , Pele , Ferimentos por Arma de Fogo , Ferimentos por Arma de Fogo/patologia , Balística Forense/métodos , Humanos , Pele/lesões , Pele/patologia , Látex , Silicones , Modelos Biológicos , Dureza
9.
J Nucl Cardiol ; : 102045, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343355

RESUMO

BACKGROUND: We compared silicone photomultipliers with digital photon counting (SiPM) and photomultiplier tubes (PMT) PET in imaging coronary plaque activity with 18F-sodium fluoride (18F-NaF) and evaluated comprehensively SiPM PET reconstruction settings. METHODS: In 25 cardiovascular disease patients (mean age 67±12 years), we conducted 18F-NaF PET on a SiPM (Biograph Vision) and conventional PET (Discovery 710) on the same day as part of a prospective clinical trial (NCT03689946). Following administration of 250 MBq of 18F-NaF, patients underwent a contrast-enhanced CT angiography and a 30-min PET acquisition in list mode on each PET consecutively. Image noise was defined as mean standard deviation of blood pool activity within the left atria. Target-to-background ratio (TBR) and signal-to-noise ratio (SNR) were measured within the whole-vessel tubular 3-dimensional volumes of interest on the cardiac motion and attenuation corrected 18F-NaF PET images using dedicated software. RESULTS: There were significant differences in image noise and background activity between the two PETs (Image noise (%), PMT: 7.6±3.7 vs. SiPM: 4.0±2.3, p<0.001; background activity, PMT: 1.4±0.4 vs. SiPM: 1.0±0.3, p<0.001). Similarly, the SNR and TBR were significantly higher in vessels scanned with the SiPM PET (SNR, PMT: 16.3±11.5 vs. SiPM: 32.7±29.8, p<0.001; TBR, PMT: 0.8±0.4 vs. SiPM: 1.1±0.6, p<0.001). SiPM PET image reconstruction with a 256 matrix, 1.4 mm pixel, and 2 mm Gaussian filter provided best tradeoff in terms of maximal SNR, TBR and clinically practical file size. CONCLUSIONS: In 18F-NaF coronary PET imaging, the SiPM PET showed superior image contrast and less image noise compared to PMT PET.

10.
Environ Sci Technol ; 58(37): 16316-16326, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39226123

RESUMO

Exposure to per- and polyfluoroalkyl substances (PFASs) primarily occurs via consumption of contaminated drinking water and food; however, individuals can also be exposed dermally and via inhalation indoors. This study developed an analytical method for measuring volatile PFASs in silicone wristbands and used them to assess personal exposure in a Midwestern community (n = 87). Paired samples of blood and wristbands were analyzed for PFASs using LC-MS/MS and GC-HRMS to monitor both non-volatile and volatile PFASs. The most frequently detected PFASs in wristbands were: 6:2 diPAP, 6:2 FTOH, MeFOSE and EtFOSE. Females had a 4-fold higher exposure to 6:2 diPAP compared to males and age-dependent differences in exposure to 6:2 FTOH, MeFOSE and EtFOSE were observed. Exposure to MeFOSE and EtFOSE differed based on the average time spent in the home. Frequently detected PFASs in blood were: PFOA, PFOS, PFHxS, PFHpS, and N-MeFOSAA. A strong correlation was found between MeFOSE in the wristbands and N-MeFOSAA in serum (rs = 0.90, p-value <0.001), suggesting exposure to this PFAS was primarily via inhalation and dermal exposure. These results demonstrate that wristbands can provide individual level data on exposure to some polyfluoroalkyl precursors present indoors that reflect serum levels of their suspected biotransformation products.


Assuntos
Silicones , Humanos , Feminino , Masculino , Fluorocarbonos , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Adulto
11.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577774

RESUMO

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Assuntos
Polietileno , Poluentes Químicos da Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos , Silicones
12.
Environ Sci Technol ; 58(20): 8825-8834, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712863

RESUMO

Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.


Assuntos
Retardadores de Chama , Retardadores de Chama/análise , Humanos , Temperatura , Exposição Ambiental , Veículos Automotores
13.
Transpl Int ; 37: 12947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119064

RESUMO

More than 13 million children are born preterm annually. Prematurity-related mortality accounts for 0.9 million deaths worldwide. The majority of those affected are Extremely Preterm Infants (gestational age less than 28 weeks). Immaturity causes organ failure and specific morbidities like germinal matrix hemorrhage, bronchopulmonary dysplasia, and necrotizing enterocolitis. Artificial womb and placenta technologies address these issues. As a bridge-to-life technology, they provide a liquid environment to allow organ maturation under more physiological conditions. The proposed artificial womb can adapt to fetal growth. Volume adjustment is achieved by removing fluid from the interspace between an inner and outer chamber. Results of the in vitro tests showed a temperature constancy of 36.8°C ± 0.3°C without pressure loss over 7 days. The volume of the inner sac was variable between 3.6 and 7.0 L. We designed a filtration and disinfection system for this particular purpose. This system has proven strong disinfection capabilities, effective filtering of metabolic waste, and the ability to avoid phospholipid washout. The presented artificial womb has sufficient volume variability to adapt to the physiologic growth of an extremely preterm neonate over a 4-week period. We regard this as an important step in the development of this bridge-to-life technology.


Assuntos
Órgãos Artificiais , Lactente Extremamente Prematuro , Humanos , Recém-Nascido , Feminino , Gravidez , Desinfecção , Idade Gestacional
14.
Macromol Rapid Commun ; 45(16): e2400228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837476

RESUMO

To enhance the low-temperature toughness and resistance of the engineering plastic polyamide PA12, this study introduces novel PA12/MVQ@POE-g-MAH ternary composites using a two-step process and dynamic curing. Analytical results indicate that incorporating MVQ@POE-g-MAH into the PA12 matrix markedly enhances its toughness and heat resistance. As the MVQ@POE-g-MAH content increases, the elongation at break of PA12 composites significantly expands from 52.83% to 204.69%, and the notch impact strength escalates from 8.69 to 74.34 kJ m-2. In addition, the brittleness temperature of PA12 decreases from -59.5 to -67.0 °C. Experimental findings confirm that POE-g-MAH is dispersed at the interface between MVQ and PA12, creating an encapsulated structure of MVQ@POE-g-MAH. This enhancement significantly broadens the potential applications of PA12 by improving its toughness, and resistance to both low and high temperatures, as well as impact endurance.


Assuntos
Nylons , Nylons/química , Temperatura , Temperatura Baixa , Teste de Materiais , Estrutura Molecular
15.
Macromol Rapid Commun ; : e2400300, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38950172

RESUMO

Antibacterial materials with high hydrophobicity have drawbacks such as protein adsorption, bacterial contamination, and biofilm formation, which are responsible for some serious adverse health events. Therefore, antibacterial materials with high hydrophilicity are highly desired. In this paper, UV-curable antibacterial materials are prepared from silicone-containing Choline chloride (ChCl) functionalized hyperbranched quaternary ammonium salts (QAS) and tri-hydroxylethyl acrylate phosphate (TAEP). The materials show high hydrophilic performance because their water contact angle is as low as 19.3°. The materials also exhibit quite high antibacterial efficiency against S. aureus over 95.6%, fairly high transmittance over 90%, and good mechanical performance with tensile strength as high as 6.5 MPa. It reveals that it is a feasible strategy to develop antibacterial materials with low hydrophobicity from silicone-modified ChCl-functionalized hyperbranched QAS.

16.
Biomed Eng Online ; 23(1): 89, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215308

RESUMO

BACKGROUND: To treat stenosed coronary arteries, percutaneous transluminal coronary angioplasty (PTCA) balloon catheters must combine pushability, trackability, crossability, and rewrap behavior. The existing anatomic track model (ASTM F2394) for catheter testing lacks 3D morphology, vessel tortuosity, and compliance, making evaluating performance characteristics difficult. This study aimed to develop a three-dimensional patient-specific phantom (3DPSP) for device testing and safe training for interventional cardiologists. METHODS: A range of silicone materials with different shore hardnesses (00-30-45 A) and wall thicknesses (0.5 mm, 1 mm, 2 mm) were tested to determine compliance for creating coronary vessel phantoms. Compliance was assessed using optical coherence tomography (OCT) and compared to values in the literature. Stenosis was induced using multilayer casting and brushing methods, with gypsum added for calcification. The radial tensile properties of the samples were investigated, and the relationship between Young's modulus and compliance was determined. Various methods have been introduced to approximate the friction between silicone and real coronary vessel walls. Computerized tomography (CT) scans were used to obtain patient-specific anatomy from the femoral artery to the coronary arteries. Artery lumens were segmented from the CT scans to create dissolvable 3D-printed core models. RESULTS: A 15A shore hardness silicone yielded an experimental compliance of 12.3-22.4 m m 2 mmHg · 10 3 for stenosed tubes and 14.7-57.9 m m 2 mmHg · 10 3 for uniform tubes, aligning closely with the literature data (6.28-40.88 m m 2 mmHg · 10 3 ). The Young's modulus ranged from 43.2 to 75.5 kPa and 56.6-67.9 kPa for the uniform and calcified materials, respectively. The dependency of the compliance on the wall thickness, Young's modulus, and inner diameter could be shown. Introducing a lubricant reduced the silicone friction coefficient from 0.52 to 0.13. The 3DPSP was successfully fabricated, and comparative analyses were conducted among eight commercially available catheters. CONCLUSION: This study presents a novel method for crafting 3DPSPs with realistic mechanical and frictional properties. The proposed approach enables the creation of comprehensive and anatomically precise setups spanning the right femoral artery to the coronary arteries, highlighting the importance of such realistic environments for advancing medical device development and fostering safe training conditions.


Assuntos
Angioplastia Coronária com Balão , Vasos Coronários , Humanos , Vasos Coronários/diagnóstico por imagem , Angioplastia Coronária com Balão/instrumentação , Silicones/química , Modelagem Computacional Específica para o Paciente , Imagens de Fantasmas , Teste de Materiais , Tomografia de Coerência Óptica , Modelos Anatômicos
17.
Environ Res ; 258: 119465, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908658

RESUMO

In the United States and abroad, ortho-phthalates and non-ortho-phthalate plasticizers continue to be used within a diverse array of consumer products. Prior California-specific biomonitoring programs for ortho-phthalates have focused on rural, agricultural communities and, to our knowledge, these programs have not measured the potential for exposure to non-ortho-phthalate plasticizers. Therefore, the potential for human exposure to ortho-phthalates and non-ortho-phthalate plasticizers have not been adequately addressed in regions of California that have higher population density. Since there are numerous sources of ortho-phthalates and non-ortho-phthalate plasticizers in population-dense, urban regions, the objective of this study was to leverage silicone wristbands to quantify aggregate ortho-phthalate and non-ortho-phthalate plasticizer exposure over a 5-day period across two different cohorts (2019 and 2020) of undergraduate students at the University of California, Riverside (UCR) that commute from all over Southern California. Based on 5 d of aggregate exposure across two different cohorts, total ortho-phthalate plus non-ortho-phthalate plasticizer concentrations ranged, on average, from ∼100,000-1,000,000 ng/g. Based on the distribution of individual ortho-phthalate and non-ortho-phthalate plasticizer concentrations, the concentrations of di-isononyl phthalate (DiNP, a high molecular weight ortho-phthalate), di (2-ethylhexyl) phthalate (DEHP, a high molecular weight ortho-phthalate), and di-2-ethylhexyl terephthalate (DEHT, a non-ortho-phthalate plasticizer) detected within wristbands were higher than the remaining seven ortho-phthalates and non-ortho-phthalate plasticizers measured, accounting for approximately 94-97% of the total mass depending on the cohort. Overall, our findings raise concerns about chronic DiNP, DEHP, and DEHT exposure in urban, population-dense regions throughout California.


Assuntos
Exposição Ambiental , Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análise , California , Ácidos Ftálicos/análise , Exposição Ambiental/análise , Silicones/química , Poluentes Ambientais/análise , Feminino , Masculino , Adulto Jovem , Monitoramento Ambiental/métodos , Punho , Adulto
18.
Environ Res ; 262(Pt 1): 119776, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142453

RESUMO

BACKGROUND: Although human biomonitoring of environmental chemicals has been considered a gold standard, these methods can be costly, burdensome, and prone to unwanted sources of variability that may cause confounding. Silicone wristbands have recently emerged as innovative passive samplers for measuring personal exposures. METHODS: In a pilot study from 2019 to 2021 involving 55 children aged 5-9 years in Seattle and Yakima, Washington, we utilized silicone wristbands to explore associations of sociodemographic variables and COVID-19-related restrictions, including school closures, with exposures to numerous chemicals including brominated and organophosphate ester (OPE) flame retardants, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs), phthalates, and pesticides. We additionally conducted the first analysis testing silicone wristband chemicals as predictors of child wheeze, individually and in mixtures via logistic weighted quantile sum regression (WQS). RESULTS: Among 109 semi-volatile organic compounds measured, we detected 40 in >60% of wristbands worn by children continuously for an average of 5 days. Chemicals were generally positively correlated, especially within the same class. Male sex and increasing age were linked with higher exposures across several chemical classes; Hispanic/Latino ethnicity was linked with higher exposures to some phthalates and OPEs. COVID-19 restrictions were associated with lower wristband concentrations of brominated and triaryl OPE flame retardants. Each one-decile higher WQS exposure index was suggestively associated with 2.11-fold [95% CI: 0.93-4.80] higher odds of child wheeze. Risk of child wheeze was higher per 10-fold increase in the PAH chrysene (RR = 1.93[1.07-3.49]), the pesticide cis-permethrin (3.31[1.23-8.91]), and di-isononyl phthalate (DINP) (5.40[1.22-24.0]) CONCLUSIONS: Our identification of demographic factors including sex, age, and ethnicity associated with chemical exposures may aid efforts to mitigate exposure disparities. Lower exposures to flame retardants during pandemic restrictions corroborates prior evidence of higher levels of these chemicals in school versus home environments. Future research in larger cohorts is needed to validate these findings.

19.
Environ Res ; 248: 118312, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295971

RESUMO

Overuse of chlorinated disinfectants leads to a significant accumulation of disinfection by-products. Trichloroacetic acid (TCA) is a typical carcinogenic disinfection by-product. The efficacy of the conventional degradation process is reduced by the complex nature of its structure, causing a yearly increase in its prevalence within the ecological environment and consequent infliction of significant harm. In this paper, TCA was chosen as the research subject, Fe/Ni bimetallic nanoparticles were employed as the reducing catalyst, ZIF-8@HMON as the catalytic carrier combined with Fe/Ni nanoparticles, and peroxymonosulfate (PMS) was introduced to construct the reducing-advanced oxidation synergistic system and investigated the effect of this system on the degradation performance and degradation pathway of TCA. Various characterization techniques, including TEM, SEM, XRD, FT-IR, XPS, BET, were employed to investigate the morphology, element composition and structure of composite materials analysis. Moreover, the conditions for TCA degradation can be optimized by changing the experimental environment. The results showed that 25 mg of composite catalyst (mole ratio Fe: Ni = 1:1) and 10 mg of PMS effectively degraded TCA within 20-80 mg/L range at pH = 3 and 55 °C, achieving maximum degradation within 20 min. Finally, the potential pathways of TCA degradation were analyzed using EPR and LC-MS, and the corresponding reaction mechanisms were proposed.


Assuntos
Nanopartículas , Ácido Tricloroacético , Espectroscopia de Infravermelho com Transformada de Fourier , Peróxidos/química , Nanopartículas/química
20.
J Nanobiotechnology ; 22(1): 467, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103899

RESUMO

BACKGROUND: The elastomechanical properties of nanocarriers have recently been discussed as important for the efficient delivery of various therapeutics. Some data indicate that optimal nanocarriers' elasticity can modulate in vivo nanocarrier stability, interaction with phagocytes, and uptake by target cells. Here, we presented a study to extensively analyze the in vivo behavior of LIP-SS liposomes that were modified by forming the silicone network within the lipid bilayers to improve their elastomechanical properties. We verified liposome pharmacokinetic profiles and biodistribution, including retention in tumors on a mouse model of breast cancer, while biocompatibility was analyzed on healthy mice. RESULTS: We showed that fluorescently labeled LIP-SS and control LIP-CAT liposomes had similar pharmacokinetic profiles, biodistribution, and retention in tumors, indicating that modified elasticity did not improve nanocarrier in vivo performance. Interestingly, biocompatibility studies revealed no changes in blood morphology, liver, spleen, and kidney function but indicated prolonged activation of immune response manifesting in increased concentration of proinflammatory cytokines in sera of animals exposed to all tested liposomes. CONCLUSION: Incorporating the silicone layer into the liposome structure did not change nanocarriers' characteristics in vivo. Further modification of the LIP-SS surface, including decoration with hydrophilic stealth polymers, should be performed to improve their pharmacokinetics and retention in tumors significantly. Activation of the immune response by LIP-SS and LIP-CAT, resulting in elevated inflammatory cytokine production, requires detailed studies to elucidate its mechanism.


Assuntos
Elasticidade , Lipossomos , Silicones , Lipossomos/química , Animais , Camundongos , Feminino , Silicones/química , Distribuição Tecidual , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Bicamadas Lipídicas/química , Portadores de Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA