Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.311
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
CA Cancer J Clin ; 72(4): 333-352, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34902160

RESUMO

The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.


Assuntos
Oncologia , Imagem Molecular , Animais , Humanos , Imageamento por Ressonância Magnética , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons
2.
Circulation ; 149(15): 1157-1168, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38328945

RESUMO

BACKGROUND: The extent of myocardial bone tracer uptake with technetium pyrophosphate, hydroxymethylene diphosphonate, and 3,3-diphosphono-1,2-propanodicarboxylate in transthyretin amyloid cardiomyopathy (ATTR-CM) might reflect cardiac amyloid burden and be associated with outcome. METHODS: Consecutive patients with ATTR-CM who underwent diagnostic bone tracer scintigraphy with acquisition of whole-body planar and cardiac single-photon emission computed tomography (SPECT) images from the National Amyloidosis Centre and 4 Italian centers were included. Cardiac uptake was defined according to the Perugini classification: 0=absent cardiac uptake; 1=mild uptake less than bone; 2=moderate uptake equal to bone; and 3=high uptake greater than bone. Extent of right ventricular (RV) uptake was defined as focal (basal segment of the RV free wall only) or diffuse (extending beyond basal segment) on the basis of SPECT imaging. The primary outcome was all-cause mortality. RESULTS: Among 1422 patients with ATTR-CM, RV uptake accompanying left ventricular uptake was identified by SPECT imaging in 100% of cases at diagnosis. Median follow-up in the whole cohort was 34 months (interquartile range, 21 to 50 months), and 494 patients died. By Kaplan-Meier analysis, diffuse RV uptake on SPECT imaging (n=936) was associated with higher all-cause mortality compared with focal (n=486) RV uptake (77.9% versus 22.1%; P<0.001), whereas Perugini grade was not associated with survival (P=0.27 in grade 2 versus grade 3). On multivariable analysis, after adjustment for age at diagnosis (hazard ratio [HR], 1.03 [95% CI, 1.02-1.04]; P<0.001), presence of the p.(V142I) TTR variant (HR, 1.42 [95% CI, 1.20-1.81]; P=0.004), National Amyloidosis Centre stage (each category, P<0.001), stroke volume index (HR, 0.99 [95% CI, 0.97-0.99]; P=0.043), E/e' (HR, 1.02 [95% CI, 1.007-1.03]; P=0.004), right atrial area index (HR, 1.05 [95% CI, 1.02-1.08]; P=0.001), and left ventricular global longitudinal strain (HR, 1.06 [95% CI, 1.03-1.09]; P<0.001), diffuse RV uptake on SPECT imaging (HR, 1.60 [95% CI, 1.26-2.04]; P<0.001) remained an independent predictor of all-cause mortality. The prognostic value of diffuse RV uptake was maintained across each National Amyloidosis Centre stage and in both wild-type and hereditary ATTR-CM (P<0.001 and P=0.02, respectively). CONCLUSIONS: Diffuse RV uptake of bone tracer on SPECT imaging is associated with poor outcomes in patients with ATTR-CM and is an independent prognostic marker at diagnosis.


Assuntos
Cardiomiopatias , Humanos , Cardiomiopatias/diagnóstico , Pré-Albumina/genética , Prognóstico , Tomografia Computadorizada de Emissão de Fóton Único
3.
Brain ; 147(7): 2308-2324, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38437860

RESUMO

Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.


Assuntos
Neurônios Colinérgicos , Progressão da Doença , Doença por Corpos de Lewy , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Humanos , Neurônios Colinérgicos/patologia , Neurônios Colinérgicos/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo
4.
Nano Lett ; 24(9): 2839-2845, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38395430

RESUMO

Semiconductor quantum dots are promising candidates for the generation of nonclassical light. Coupling a quantum dot to a device capable of providing polarization-selective enhancement of optical transitions is highly beneficial for advanced functionalities, such as efficient resonant driving schemes or applications based on optical cyclicity. Here, we demonstrate broadband polarization-selective enhancement by coupling a quantum dot emitting in the telecom O-band to an elliptical bullseye resonator. We report bright single-photon emission with a degree of linear polarization of 96%, Purcell factor of 3.9 ± 0.6, and count rates up to 3 MHz. Furthermore, we present a measurement of two-photon interference without any external polarization filtering. Finally, we demonstrate compatibility with compact Stirling cryocoolers by operating the device at temperatures up to 40 K. These results represent an important step toward practical integration of optimal quantum dot photon sources in deployment-ready setups.

5.
Nano Lett ; 24(11): 3395-3403, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359157

RESUMO

Bright, scalable, and deterministic single-photon emission (SPE) is essential for quantum optics, nanophotonics, and optical information systems. Recently, SPE from hexagonal boron nitride (h-BN) has attracted intense interest because it is optically active and stable at room temperature. Here, we demonstrate a tunable quantum emitter array in h-BN at room temperature by integrating a wafer-scale plasmonic array. The transient voltage electrophoretic deposition (EPD) reaction is developed to effectively enhance the filling of single-crystal nanometals in the designed patterns without aggregation, which ensures the fabricated array for tunable performances of these single-photon emitters. An enhancement of ∼500% of the SPE intensity of the h-BN emitter array is observed with a radiative quantum efficiency of up to 20% and a saturated count rate of more than 4.5 × 106 counts/s. These results suggest the integrated h-BN-plasmonic array as a promising platform for scalable and controllable SPE photonics at room temperature.

6.
Nano Lett ; 24(28): 8626-8633, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975638

RESUMO

Long-range, terrestrial quantum networks require high-brightness single-photon sources emitting in the telecom C-band for maximum transmission rates. For solid-state quantum emitters, the underlying pumping process, i.e., coherent or incoherent excitation schemes, impacts several photon properties such as photon indistinguishability, single-photon purity, and photon number coherence. These properties play a major role in quantum communication applications, the latter in particular for quantum cryptography. Here, we present a versatile telecom C-band single-photon source that is operated coherently and incoherently using two complementary pumping schemes. The source is based on a quantum dot coupled to a circular Bragg grating cavity, whereas coherent (incoherent) operation is performed via the novel SUPER scheme (phonon-assisted excitation). In this way, high end-to-end-efficiencies (ηend) of 5.36% (6.09%) are achieved simultaneously with a small multiphoton contribution g(2)(0) of 0.076 ± 0.001 [g(2)(0) of 0.069 ± 0.001] for coherent (incoherent) operation.

7.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620181

RESUMO

Advancements in photonic quantum information systems (QIS) have driven the development of high-brightness, on-demand, and indistinguishable semiconductor epitaxial quantum dots (QDs) as single photon sources. Strain-free, monodisperse, and spatially sparse local-droplet-etched (LDE) QDs have recently been demonstrated as a superior alternative to traditional Stranski-Krastanov QDs. However, integration of LDE QDs into nanophotonic architectures with the ability to scale to many interacting QDs is yet to be demonstrated. We present a potential solution by embedding isolated LDE GaAs QDs within an Al0.4Ga0.6As Huygens' metasurface with spectrally overlapping fundamental electric and magnetic dipolar resonances. We demonstrate for the first time a position- and size-independent, 1 order of magnitude increase in the collection efficiency and emission lifetime control for single-photon emission from LDE QDs embedded within the Huygens' metasurfaces. Our results represent a significant step toward leveraging the advantages of LDE QDs within nanophotonic architectures to meet the scalability demands of photonic QIS.

8.
Nano Lett ; 24(4): 1106-1113, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240528

RESUMO

Most hexagonal boron nitride (hBN) single-photon emitters (SPEs) studied to date suffer from variable emission energy and unpredictable polarization, two crucial obstacles to their application in quantum technologies. Here, we report an SPE in hBN with an energy of 2.2444 ± 0.0013 eV created via carbon implantation that exhibits a small inhomogeneity of the emission energy. Polarization-resolved measurements reveal aligned absorption and emission dipole orientations with a 3-fold distribution, which follows the crystal symmetry. Photoluminescence excitation (PLE) spectroscopy results show the predictability of polarization is associated with a reproducible PLE band, in contrast with the non-reproducible bands found in previous hBN SPE species. Photon correlation measurements are consistent with a three-level model with weak coupling to a shelving state. Our ab initio excited-state calculations shed light on the atomic origin of this SPE defect, which consists of a pair of substitutional carbon atoms located at boron and nitrogen sites separated by a hexagonal unit cell.

9.
Nano Lett ; 24(5): 1746-1752, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286024

RESUMO

Bright, polarized, and high-purity single-photon sources in telecom wavelengths are crucial components in long-distance quantum communication, optical quantum computation, and quantum networks. Semiconductor InAs/InP quantum dots (QDs) combined with photonic cavities provide a competitive path, leading to optimal single-photon sources in this range. Here, we demonstrate a bright and polarized single-photon source operating in the telecom C-band based on an elliptical Bragg grating (EBG) cavity. With a significant Purcell enhancement of 5.25 ± 0.05, the device achieves a polarization ratio of 0.986, a single-photon purity of g2(0) = 0.078 ± 0.016, and a single-polarized photon collection efficiency of ∼24% at the first lens (NA = 0.65) without blinking. These findings suggest that C-band QD-based single-photon sources are potential candidates for advancing quantum communication.

10.
Nano Lett ; 24(1): 319-325, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147350

RESUMO

Silicon T centers present the promising possibility of generating optically active spin qubits in an all-silicon device. However, these color centers exhibit long excited state lifetimes and a low Debye-Waller factor, making them dim emitters with low efficiency into the zero-phonon line. Nanophotonic cavities can solve this problem by enhancing radiative emission into the zero-phonon line through the Purcell effect. In this work, we demonstrate cavity-enhanced emission from a single T center in a nanophotonic cavity. We achieve a 2 order of magnitude increase in the brightness of the zero-phonon line relative to waveguide-coupled emitters, a 23% collection efficiency from emitter to fiber, and an overall emission efficiency into the zero-phonon line of 63.4%. We also observe a lifetime enhancement of 5, corresponding to a Purcell factor exceeding 18 when correcting for the emission to the phonon sideband. These results pave the way toward efficient spin-photon interfaces in silicon photonics.

11.
Nano Lett ; 24(2): 640-648, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166209

RESUMO

We demonstrate an important step toward on-chip integration of single-photon sources at room temperature. Excellent photon directionality is achieved with a hybrid metal-dielectric bullseye antenna, while back-excitation is permitted by placement of the emitter in a subwavelength hole positioned at its center. The unique design enables a direct back-excitation and very efficient front coupling of emission either to a low numerical aperture (NA) optics or directly to an optical fiber. To show the versatility of the concept, we fabricate devices containing either a colloidal quantum dot or a nanodiamond containing silicon-vacancy centers, which are accurately positioned using two different nanopositioning methods. Both of these back-excited devices display front collection efficiencies of ∼70% at NAs as low as 0.5. The combination of back-excitation with forward directionality enables direct coupling of the emitted photons into a proximal optical fiber without any coupling optics, thereby facilitating and simplifying future integration.

12.
Nano Lett ; 24(18): 5529-5535, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38668677

RESUMO

Quantum emitters are essential components of quantum photonic circuitry envisioned beyond the current optoelectronic state-of-the-art. Two dimensional materials are attractive hosts for such emitters. However, the high single photon purity required is rarely realized due to the presence of spectrally degenerate classical light originating from defects. Here, we show that design of a van der Waals heterostructure effectively eliminates this spurious light, resulting in purities suitable for a variety of quantum technological applications. Single photon purity from emitters in monolayer WSe2 increases from 60% to 92% by incorporating this monolayer in a simple graphite/WSe2 heterostructure. Fast interlayer charge transfer quenches a broad photoluminescence background by preventing radiative recombination through long-lived defect bound exciton states. This approach is generally applicable to other 2D emitter materials, circumvents issues of material quality, and offers a path forward to achieve the ultrahigh single photon purities ultimately required for photon-based quantum technologies.

13.
Microcirculation ; 31(5): e12853, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38690605

RESUMO

OBJECTIVE: Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF. METHODS: We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5-4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared. RESULTS: The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min-1 g-1) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min-1 g-1) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32-5.48) for Group 2 and 34.9 (95% CI: 13.23-92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76. CONCLUSION: Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.


Assuntos
Cádmio , Circulação Coronária , Telúrio , Tomografia Computadorizada de Emissão de Fóton Único , Zinco , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Zinco/sangue , Cádmio/sangue , Microcirculação , Imagem de Perfusão do Miocárdio/métodos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico por imagem , Compostos de Zinco , Albumina Sérica
14.
Mol Pharm ; 21(5): 2435-2440, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38626389

RESUMO

Among clinically used radiopharmaceuticals, iodine-123 labeled metaiodobenzylguanidine ([123I]mIBG) serves for diagnosing neuroendocrine tumors and obtaining images of myocardial sympathetic innervation. mIBG, a structural analogue of norepinephrine (NE), a neurotransmitter acting in peripheral and central nerves, follows a pathway similar to NE, transmitting signals through the NE transporter (NET) located at synaptic terminals. It moves through the body without decomposing, enabling noninvasive image evaluation. In this study, we aimed to quantify [123I]mIBG uptake in the adrenal glands using small animal single-photon emission computed tomography/computed tomography (SPECT/CT) images post [123I]mIBG administration. We investigated the possibility of assessing the effectiveness of ß-adrenergic receptor blockers by quantifying SPECT/CT images and biodistribution results to determine the degree of [123I]mIBG uptake in the adrenal glands treated with labetalol, a known ß-adrenergic receptor blocker. Upon intravenous administration of [123I]mIBG to mice, SPECT/CT images were acquired over time to confirm the in vivo distribution pattern, revealing a clear uptake in the adrenal glands. Labetalol inhibited the uptake of [123I]mIBG in cell lines expressing NET. A decrease in [123I]mIBG uptake in the adrenal glands was observed in the labetalol-treated group compared with the normal group through SPECT/CT imaging and biodistribution studies. These results demonstrate that SPECT/CT imaging with [123I]mIBG could be applicable for evaluating the preclinical efficacy of new antihypertensive drug candidates such as labetalol, a ß-adrenergic receptor blocker.


Assuntos
3-Iodobenzilguanidina , Antagonistas Adrenérgicos beta , Radioisótopos do Iodo , Labetalol , Animais , Humanos , Masculino , Camundongos , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacocinética , Linhagem Celular Tumoral , Estudos de Viabilidade , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual
15.
Eur Radiol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355986

RESUMO

OBJECTIVE: Immunotherapy has dramatically altered the therapeutic landscape for oncology, but more research is needed to identify patients who are likely to achieve durable clinical benefit and those who may develop unacceptable side effects. We investigated the role of artificial intelligence in PET/SPECT-guided approaches for immunotherapy-treated patients. METHODS: We performed a scoping review of MEDLINE, CENTRAL, and Embase databases using key terms related to immunotherapy, PET/SPECT imaging, and AI/radiomics through October 12, 2022. RESULTS: Of the 217 studies identified in our literature search, 24 relevant articles were selected. The median (interquartile range) sample size of included patient cohorts was 63 (157). Primary tumors of interest were lung (n = 14/24, 58.3%), lymphoma (n = 4/24, 16.7%), or melanoma (n = 4/24, 16.7%). A total of 28 treatment regimens were employed, including anti-PD-(L)1 (n = 13/28, 46.4%) and anti-CTLA-4 (n = 4/28, 14.3%) monoclonal antibodies. Predictive models were built from imaging features using univariate radiomics (n = 7/24, 29.2%), radiomics (n = 12/24, 50.0%), or deep learning (n = 5/24, 20.8%) and were most often used to prognosticate (n = 6/24, 25.0%) or describe tumor phenotype (n = 5/24, 20.8%). Eighteen studies (75.0%) performed AI model validation. CONCLUSION: Preliminary results suggest broad potential for the application of AI-guided immunotherapy management after further validation of models on large, prospective, multicenter cohorts. CLINICAL RELEVANCE STATEMENT: This scoping review describes how artificial intelligence models are built to make predictions based on medical imaging and explores their application specifically in the PET and SPECT examination of immunotherapy-treated cancers. KEY POINTS: • Immunotherapy has drastically altered the cancer treatment landscape but is known to precipitate response patterns that are not accurately accounted for by traditional imaging methods. • There is an unmet need for better tools to not only facilitate in-treatment evaluation but also to predict, a priori, which patients are likely to achieve a good response with a certain treatment as well as those who are likely to develop side effects. • Artificial intelligence applied to PET/SPECT imaging of immunotherapy-treated patients is mainly used to make predictions about prognosis or tumor phenotype and is built from baseline, pre-treatment images. Further testing is required before a true transition to clinical application can be realized.

16.
Eur Radiol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625611

RESUMO

Stable chest pain is a common symptom with multiple potential causes. Non-invasive imaging has an important role in diagnosis and guiding management through the assessment of coronary stenoses, atherosclerotic plaque, myocardial ischaemia or infarction, and cardiac function. Computed tomography (CT) provides the anatomical evaluation of coronary artery disease (CAD) with the assessment of stenosis, plaque type and plaque burden, with additional functional information available from CT fractional flow reserve (FFR) or CT myocardial perfusion imaging. Stress magnetic resonance imaging, nuclear stress myocardial perfusion imaging, and stress echocardiography can assess myocardial ischaemia and other cardiac functional parameters. Coronary CT angiography can be used as a first-line test for many patients with stable chest pain, particularly those with low to intermediate pre-test probability. Functional testing may be considered for patients with known CAD, where the clinical significance is uncertain based on anatomical testing, or in patients with high pre-test probability. This practice recommendations document can be used to guide the selection of non-invasive imaging for patients with stable chest pain and provides brief recommendations on how to perform and report these diagnostic tests. KEY POINTS: The selection of non-invasive imaging tests for patients with stable chest pain should be based on symptoms, pre-test probability, and previous history. Coronary CT angiography can be used as a first-line test for many patients with stable chest pain, particularly those with low to intermediate pre-test probability. Functional testing can be considered for patients with known CAD, where the clinical significance of CAD is uncertain based on anatomical testing, or in patients with high pre-test probability. KEY RECOMMENDATIONS: Non-invasive imaging is an important part of the assessment of patients with stable chest pain. The selection of non-invasive imaging test should be based on symptoms, pre-test probability, and previous history. (Level of evidence: High). Coronary CT angiography can be used as a first line test for many patients with stable chest pain, particularly those with low to intermediate pre-test probability. CT provides information on stenoses, plaque type, plaque volume, and if required functional information with CT fractional flow reserve or CT perfusion. (Level of evidence: High). Functional testing can be considered for patients with known CAD, where the clinical significance of CAD is uncertain based on anatomical testing, or in patients with high pre-test probability. Stress MRI, SPECT, PET, and echocardiography can provide information on myocardial ischemia, along with cardiac functional and other information. (Level of evidence: Medium).

17.
J Surg Res ; 296: 196-202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277957

RESUMO

INTRODUCTION: Planar lymphoscintigraphy (PL) is commonly used in mapping before sentinel lymph node biopsy (SLNB) for invasive cutaneous melanoma. Recently, single-photon emission computed tomography (SPECT)/ computed tomography (CT) has been utilized, in addition to PL, for detailed anatomic information and detection of sentinel lymph nodes (SLNs) outside of the primary nodal basin in truncal and head and neck melanoma. Following a protocol change due to COVID-19, our institution began routinely obtaining both PL and SPECT-CT imaging for all melanoma SLN mapping. We hypothesized that SPECT-CT is associated with higher instances of SLNBs from "nontraditional" nodal basins (NTNB) for extremity melanomas. METHODS: Patients with extremity melanoma (2017-2022) who underwent SLNB were grouped into SPECT-CT with PL versus PL alone. Outcomes were total SLNs removed, + or-SLN status, total NTNB sampled, and postoperative complication rate. Poisson regression and logistic regression models were used to assess association of SPECT-CT with patient outcomes. RESULTS: Of 380 patients with extremity melanoma, 42.11% had SPECT-CT. There were no differences between the groups with regards to age at diagnosis or sex. From 2020 to 2022, all patients underwent SPECT-CT. SPECT-CT was associated with increased odds of SLNB from an NTNB, (odds ratio = 2.39 [95% confidence interval: 1.25-4.67]). There was no difference in odds of number of SLNs sampled, SLN positivity rate, or postoperative complication rate with SPECT-CT. CONCLUSIONS: Routine SPECT-CT was associated with higher incidence of SLNB in NTNB but did not increase number of SLNs removed or SLN positivity rate. The added value of routine SPECT-CT in cutaneous melanoma of the extremities remains to be defined.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico por imagem , Melanoma/cirurgia , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/cirurgia , Neoplasias Cutâneas/patologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Biópsia de Linfonodo Sentinela/métodos , Extremidades/diagnóstico por imagem , Extremidades/patologia , Complicações Pós-Operatórias/cirurgia , Tomografia Computadorizada de Emissão de Fóton Único/métodos
18.
Nanotechnology ; 35(41)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38955175

RESUMO

Efficiently coupling single-photon emitters in the telecommunication C-band that are not deterministically positioned to photonic structures requires both spatial and spectral mapping. This study introduces the photoluminescence mapping of telecom C-band self-assembled quantum dots (QDs) by confocal laser scanning microscopy, a technique previously unexplored in this wavelength range which fulfills these two requirements. We consider the effects of distortions inherent to any imaging system but largely disregarded in prior works to derive accurate coordinates from photoluminescence maps. We obtain a position uncertainty below 11 nm for 10% of the QDs when assuming no distortions, highlighting the potential of the scanning approach. After distortion correction, we found that the previously determined positions are on average shifted by 428 nm from the corrected positions, demonstrating the necessity of this correction for accurate positioning. Then, through error propagation, the position uncertainty for 10% of the QDs increases to 110 nm.

19.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38237187

RESUMO

Single-photon detector (SPD), an essential building block of the quantum communication system, plays a fundamental role in developing next-generation quantum technologies. In this work, we propose an efficient modeling workflow of nanowire SPDs utilizing avalanche breakdown at reverse-biased conditions. The proposed workflow is explored to maximize computational efficiency and balance time-consuming drift-diffusion simulation with fast script-based post-processing. Without excessive computational effort, we could predict a suite of key device performance metrics, including breakdown voltage, dark/light avalanche built-up time, photon detection efficiency, dark count rate, and the deterministic part of timing jitter due to device structures. Implementing the proposed workflow onto a single InP nanowire and comparing it to the extensively studied planar devices and superconducting nanowire SPDs, we showed the great potential of nanowire avalanche SPD to outperform their planar counterparts and obtain as superior performance as superconducting nanowires, i.e. achieve a high photon detection efficiency of 70% with a dark count rate less than 20 Hz at non-cryogenic temperature. The proposed workflow is not limited to single-nanowire or nanowire-based device modeling and can be readily extended to more complicated two-/three dimensional structures.

20.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38154138

RESUMO

Solid-state single-photon emitters (SPEs) commonly encounter the limitation of quasi-omnidirectional radiation patterns, which poses challenges in utilizing their emission with conventional optical instruments. In this study, we demonstrate the tailoring of the far-field radiation patterns of SPEs based on colloidal quantum dots (QDs), both theoretically and experimentally, by employing a polymer-based dielectric antenna. We introduce a simple and cost-effective technique, namely low one-photon absorption direct laser writing, to achieve precise coupling of a QD into an all-polymer circular waveguide resonance grating. By optimizing the geometry parameters of the structure using 3D finite-difference time-domain simulations, resonance at the emission wavelength of QDs is achieved in the direction perpendicular to the substrate, resulting in photon streams with remarkably high directivity on both sides of the grating. Theoretical calculations predict beam divergence values below 2°, while experimental measurements using back focal plane imaging yield divergence angles of approximately 8°. Our study contributes to the evaluation of concentric circular grating structures employing low refractive index polymer materials, thereby expanding the possibilities for their application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA