Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Fish Biol ; 100(6): 1475-1496, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35394647

RESUMO

Marine resources are often shared among countries, with some fish stocks straddling multiple Exclusive Economic Zones, therefore understanding the structure of populations is important for the effective management of fish stocks. Otolith chemical analyses could discriminate among populations based on differences in the chemical composition of otoliths. We used otoliths from two deepwater snappers (flame snapper Etelis coruscans and ruby snapper Etelis boweni) to examine the evidence for population structure across six Pacific Island countries using solution-based inductively coupled plasma mass spectrometry (ICP-MS) for otolith core and whole otolith samples and laser ablation ICP-MS (LA-ICP-MS) for core and edge areas of a cross-sectioned otolith. The inter-species comparison of these methods is important as the two species are often managed under the same regulations. For both species, the two methods demonstrated separation among the locations sampled with high classification accuracy. Smaller laser ablation spot size gave greater temporal resolution over the life-history transect. Comparing the early life-history section of the otoliths (i.e., the core), one interpretation is that young fish experienced more uniform environments in the open ocean as larvae than adults, as the elemental fingerprints had greater overlap among multiple locations. LA-ICP-MS methods had some advantages over solution-based ICP-MS and generally better discrimination for the trace elements investigated. There were substantial differences between species, but both methods suggested nonmixing populations at the regional scale. Otolith chemistry can be an effective tool in discriminating variation for deepwater marine species in multispecies fisheries, and edge measurements from LA-ICP-MS provided the greatest resolution. Although caution should be taken in interpreting the results from relatively small samples sizes, otolith chemical analyses could be useful at these spatial scales to investigate population structure. This information on separate or overlapping populations could be used in future regional fishery management plans.


Assuntos
Membrana dos Otólitos , Oligoelementos , Animais , Pesqueiros , Peixes , Membrana dos Otólitos/química , Oligoelementos/análise
2.
Parasitol Res ; 120(5): 1605-1615, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33830362

RESUMO

Parasites can be used as biological tags to assess stock structures in various marine fish species. In the present study, the species composition and infection levels of parasitic nematodes of the genus Anisakis in the skipjack tuna Katsuwonus pelamis were examined in the Northwest Pacific and adjacent seas. A total of 867 third-stage larvae of Anisakis were collected from 112 skipjack tunas captured around Japan and in other subtropical localities. All larvae were identified as A. berlandi, A. pegreffii, A. simplex (s.s.), A. typica, and A. physeteris (s.l.) by the direct sequencing of the mitochondrial cox2 gene and real-time PCR assays targeting the nuclear ITS region. Anisakis species composition differed among northeastern Japan, the Sea of Japan, and other areas (central Japan, the Nansei Islands, and subtropical region), which is largely concordant with previous stock discrimination of skipjack tuna. Molecular phylogenetic analysis resulted in two intraspecific genetic groups in A. simplex (s.s.), one of which occurred almost exclusively in northeastern Japan. This could be a useful indicator for stock discrimination. Skipjack tunas from northeastern Japan were also characterized by a remarkable variety in the intensity of A. simplex (s.s.), suggesting the commingling of individuals with different migration patterns. This idea might be further justified by the geographic distribution of two genetically distinct groups of A. physeteris (s.l.).


Assuntos
Anisaquíase/parasitologia , Anisakis/classificação , Anisakis/isolamento & purificação , Doenças dos Peixes/parasitologia , Atum/parasitologia , Animais , Anisaquíase/epidemiologia , Anisakis/genética , Peixes/parasitologia , Japão/epidemiologia , Larva/crescimento & desenvolvimento , Oceano Pacífico/epidemiologia , Filogenia
3.
Genetica ; 147(3-4): 259-267, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31144087

RESUMO

We analyzed intraspecific diversity of Indian anchovy, Stolephorus indicus, a commercially and ecologically important species, using mitochondrial DNA markers so as to derive insights into population structuring and historical demography. Analyses were carried out on 128 and 138 individuals collected from 5 locations along the range of distribution using mitochondrial ATPase (843 bp) and COI (663 bp) sequences respectively. Significant connectivity and gene flow was detected among fishes collected from all the geographic locations as indicated by lack of structuring in Bayesian clustering analysis along with insignificant ΦST values. Oceanographic features of the Bay of Bengal, Arabian Sea and Andaman Sea may be favorable for the dispersal of anchovy larvae and subsequent gene flow. Historical demographic analyses indicated a demographic and spatial expansion taken place approximately during 125,000 years before present, the Pleistocene epoch. Indian Ocean witnessed emergence of upwelling events and consequent increase in productivity during the Pleistocene epoch causing a demographic and spatial expansion of anchovies. Management measures for this species should be devised considering it as a single stock along its entire range of distribution.


Assuntos
Peixes/genética , Adenosina Trifosfatases/genética , Animais , Teorema de Bayes , DNA Mitocondrial , Demografia , Peixes/classificação , Fluxo Gênico , Variação Genética , Genética Populacional/história , Haplótipos , História Antiga , Oceano Índico , Mitocôndrias/genética , Análise de Sequência de DNA
4.
J Fish Biol ; 88(3): 1143-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813161

RESUMO

The metazoan parasites of 403 specimens of the southern ray's bream Brama australis from three localities in southern Chile (Lebu 36° 70' S; 73° 40' W, Calbuco 41° 50' S; 73° 08' W and Punta Arenas 53° 10' S; 70° 50' W) were recorded. More than 23 400 parasite specimens belonging to 12 taxa were registered. Metazoan parasites were dominated by the copepod Hatschekia conifera, constituting 97% of the total number of parasites; the larval cestode Hepatoxylon trichiuri was the second most important parasite (2·1% of the total number of parasites). The remaining 10 species constituted <1% of the metazoan parasites. Parasitological evidence, based on univariate and multivariate analysis, does not support the existence of discrete stocks in the studied zone.


Assuntos
Doenças dos Peixes/parasitologia , Parasitos/classificação , Perciformes/parasitologia , Animais , Aquicultura , Cestoides/fisiologia , Chile , Copépodes/fisiologia , Parasitos/isolamento & purificação
5.
Biol Lett ; 11(4): 20150071, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25878049

RESUMO

Western North Pacific gray whales (WGWs), once considered extinct, are critically endangered with unknown migratory routes and reproductive areas. We attached satellite-monitored tags to seven WGWs on their primary feeding ground off Sakhalin Island, Russia, three of which subsequently migrated to regions occupied by non-endangered eastern gray whales (EGWs). A female with the longest-lasting tag visited all three major EGW reproductive areas off Baja California, Mexico, before returning to Sakhalin Island the following spring. Her 22 511 km round-trip is the longest documented mammal migration and strongly suggests that some presumed WGWs are actually EGWs foraging in areas historically attributed to WGWs. The observed migration routes provide evidence of navigational skills across open water that break the near-shore north-south migratory paradigm of EGWs. Despite evidence of genetic differentiation, these tagging data indicate that the population identity of whales off Sakhalin Island needs further evaluation.


Assuntos
Migração Animal , Baleias/fisiologia , Animais , Espécies em Perigo de Extinção , Feminino , Masculino , Oceano Pacífico , Estações do Ano
6.
J Fish Biol ; 86(3): 1153-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583211

RESUMO

The level of genetic homogeneity and demographic history of the Monterey Spanish mackerel Scomberomorus concolor was assessed by analyses using sequences of the mitochondrial (mt)DNA-control region of samples from the two oceanographic regions of the Gulf of California in order to define the stock structure for this exploited vulnerable species. The data were consistent with a single homogeneous population and revealed the hallmark of fluctuations in population size; these fluctuations appear to have occurred during glacial events of the middle to late Pleistocene, which may in turn be related to the colonization and expansion of S. concolor populations in the gulf.


Assuntos
Genética Populacional , Perciformes/genética , Animais , DNA Mitocondrial/genética , Haplótipos , México , Filogeografia , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA
7.
Mol Ecol ; 23(20): 5018-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256360

RESUMO

Recent molecular studies have shown that highly mobile species with continuous distributions can exhibit fine-scale population structure. In this context, we assessed genetic structure within a marine species with high dispersal potential, the Atlantic spotted dolphin (Stenella frontalis). Using 19 microsatellite loci and mitochondrial control region sequences, population structure was investigated in the western North Atlantic, the Gulf of Mexico and the Azores Islands. Analyses of the microsatellite data identified four distinct genetic clusters, which were supported by the control region sequences. The highest level of divergence was seen between two clusters corresponding to previously described morphotypes that inhabit oceanic and shelf waters. The combined morphological and genetic evidence suggests these two lineages are on distinct evolutionary trajectories and could be considered distinct subspecies despite their parapatry. Further analysis of the continental shelf cluster resulted in three groups: animals inhabiting shelf waters in the western North Atlantic, the eastern Gulf of Mexico and the western Gulf of Mexico. Analyses of environmental data indicate the four genetic clusters inhabit distinct habitats in terms of depth and sea surface temperature. Contemporary dispersal rate estimates suggest all of these populations should be considered as distinct management units. Conversely, no significant genetic differentiation was observed between S. frontalis from offshore waters of the western North Atlantic and the Azores, which are separated by approximately 4500 km. Overall, the hierarchical structure observed within the Atlantic spotted dolphin shows that the biogeography of the species is complex because it is not shaped solely by geographic distance.


Assuntos
Ecossistema , Genética Populacional , Stenella/genética , Animais , Oceano Atlântico , Açores , Teorema de Bayes , Análise por Conglomerados , DNA Mitocondrial/genética , Feminino , Variação Genética , Genótipo , Golfo do México , Masculino , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA , Stenella/anatomia & histologia
8.
Sci Rep ; 14(1): 26598, 2024 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-39496708

RESUMO

Failure to consider population structure when managing harvested fishes increases the risk of stock depletion, yet empirical estimates of population structure are often lacking for important fishery species. In this study, we characterise genetic variation in single nucleotide polymorphisms (SNPs) to assess population structure for three harvested species of tropical snappers across the broad (up to 300 km wide) and extensive (~ 4000 km) continental shelf of north-western Australia. Comparisons across ~ 300 individuals per species, showed remarkably similar patterns of genetic structure among Lutjanus sebae (red emperor), L. malabaricus (saddletail snapper) and Pristipomoides multidens (goldband snapper) despite subtle differences in biological and ecological traits. Low levels of genetic subdivision were reflected in an isolation by distance relationship where genetic connectivity increased with geographic proximity. This indicates extensive but not unlimited dispersal across the north-western Australian shelf. Our findings provide evidence of connectivity between current management areas, violating the assumption of multiple independent stocks. Spatial stock assessment models may be more suitable for the management of these species however demographic connectivity rates cannot be accurately estimated from the conventional population genetic approaches applied in this study. We recommend that managers aim to maintain adequate spawning biomass across current management areas, and assess stocks at finer scales, where practical.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Animais , Austrália Ocidental , Pesqueiros , Peixes/genética , Variação Genética , Metagenômica/métodos , Perciformes/genética , Austrália
9.
3 Biotech ; 14(2): 51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274848

RESUMO

To study genetic variation in Indian populations of tilapia, Oreochromis niloticus, both truss morphometrics and genetic characterization have been performed. In the present study, 88 individuals from two farm populations (GIFT and West Bengal) and one reservoir population (Gujarat) were selected to analyse variations at ten morphometric landmarks and eight microsatellite loci. Truss morphometric analysis showed PCI, PCII, and PCIII expressing 29.1%, 21.36%, and 15.48% of the variance, respectively. Results showed no clear shift in shape between the studied populations of O. niloticus, indicating low morphological variability among them. The number of microsatellite alleles ranged from 3 to 9, while expected heterozygosity (HE) and observed heterozygosity (HO) values ranged from 0.56 (WB) to 0.68 (Guj) and 0.59 (GIFT) to 0.72 (Guj), respectively. The Gujarat and West Bengal populations had the smallest pairwise distance (0.0123) between them, indicating that they were genetically closer. Individuals from GIFT, however, showed the largest distance from the other populations. DNA marker variations revealed the highest genetic variability in the Gujarat population and the lowest variability in the GIFT population. The results of this study will help establish a base population for genetic improvement program and conservation of wild populations.

10.
J Anim Ecol ; 82(4): 791-803, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23464527

RESUMO

Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that spends time at breeding areas at low latitudes in the northwest Atlantic during spring and summer. From there, they migrate widely throughout the North Atlantic, but many show fidelity to one region off eastern Canada, where critical foraging habitat has been proposed. Our goal was to identify nesting beach origins for turtles foraging here. Using genetics, we identified natal beaches for 288 turtles that were live-captured off the coast of Nova Scotia, Canada. Turtles were sampled (skin or blood) and genotyped using 17 polymorphic microsatellite markers. Results from three assignment testing programs (ONCOR, GeneClass2 and Structure) were compared. Our nesting population reference data set included 1417 individuals from nine Atlantic nesting assemblages. A supplementary data set for 83 foraging turtles traced to nesting beaches using flipper tags and/or PIT tags (n = 72), or inferred from satellite telemetry (n = 11), enabled ground-truthing of the assignments. We first assigned turtles using only genetic information and then used the supplementary recapture information to verify assignments. ONCOR performed best, assigning 64 of the 83 recaptured turtles to natal beaches (77·1%). Turtles assigned to Trinidad (164), French Guiana (72), Costa Rica (44), St. Croix (7), and Florida (1) reflect the relative size of those nesting populations, although none of the turtles were assigned to four other potential source nesting assemblages. Our results demonstrate the utility of genetic approaches for determining source populations of foraging marine animals and include the first identification of natal rookeries of male leatherbacks, identified through satellite telemetry and verified with genetics. This work highlights the importance of long-term monitoring and tagging programmes in nesting and high-use foraging areas. Moreover, it provides a scientific basis for evaluating stock-specific effects of fisheries on migratory marine species, thus identifying where coordinated international recovery efforts may be most effective.


Assuntos
Tartarugas/genética , Tartarugas/fisiologia , Sistemas de Identificação Animal , Animais , Oceano Atlântico , Demografia , Feminino , Masculino , Repetições de Microssatélites , Telemetria
11.
Anim Genet ; 44(5): 533-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23574152

RESUMO

The high number of multiplex PCRs developed for gilthead seabream (Sparus aurata L.) from many different microsatellite markers does not allow comparison among populations. This highlights the need for developing a reproducible panel of markers, which can be used with safety and reliability by all users. In this study, the first standardised panel of two new microsatellite multiplex PCRs was developed for this species. Primers of 138 specific microsatellites from the genetic linkage map were redesigned and evaluated according to their genetic variability, allele size range and genotyping reliability. A protocol to identify and classify genotyping errors or potential errors was proposed to assess the reliability of each marker. Two new multiplex PCRs from the best assessed markers were designed with 11 markers in each, named SMsa1 and SMsa2 (SuperMultiplex Sparus aurata). Three broodstocks (59, 47 and 98 breeders) from different Spanish companies, and a sample of 80 offspring from each one, were analysed to validate the usefulness of these multiplexes in the parental assignation. It was possible to assign each offspring to a single parent pair (100% success) using the exclusion method with SMsa1 and/or SMsa2. In each genotyped a reference sample (Ref-sa) was used, and its DNA is available on request similar to the kits of bin set to genotype by genemapper (v.3.7) software (kit-SMsa1 and kit-SMsa2). This will be a robust and effective tool for pedigree analysis or characterisation of populations and will be proposed as an international panel for this species.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Dourada/genética , Animais , Aquicultura/métodos , Aquicultura/normas , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/normas
12.
Evol Appl ; 16(2): 223-233, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793686

RESUMO

Stock structure is of paramount importance for sustainable management of exploited resources. In that context, genetic markers have been used for more than two decades to resolve spatial structure of marine exploited resources and to fully fathom stock dynamics and interactions. While genetic markers such as allozymes and RFLP dominated the debate in the early era of genetics, technology advances have provided scientists with new tools every decade to better assess stock discrimination and interactions (i.e. gene flow). Here, we provide a review of genetic studies performed to understand stock structure of Atlantic cod in Icelandic waters, from the early allozyme approaches to the genomic work currently carried out. We further highlight the importance of the generation of a chromosome-anchored genome assembly together with whole-genome population data, which drastically changed our perception of the possible management units to consider. After nearly 60 years of genetic investigation of Atlantic cod structure in Icelandic waters, genetic (and later genomic) data combined with behavioural monitoring using Data Storage Tags shifted the attention from geographical population structures to behavioural ecotypes. This review also demonstrates the need for future research to further disentangle the impact of these ecotypes (and gene flow among them) on the population structure of Atlantic cod in Icelandic waters. It also highlights the importance of whole-genome data to unravel unexpected within-species diversity related to chromosomal inversions and associated supergenes, which are important to consider for future development of sustainable management programmes of the species within the North Atlantic.

13.
Mar Environ Res ; 173: 105543, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952373

RESUMO

Understanding the connectivity of exploited fish populations is critical to their management under both rapid and long-term environmental change. Patterns of connectivity are unknown for most fishes in the Shark Bay World Heritage Area (Western Australia), a large, shallow embayment in the eastern Indian Ocean, vulnerable to marine heatwaves. The composition of oxygen (δ18O) and carbon (δ13C) stable isotopes in whole otoliths of the recreationally-important reef fish Lethrinus laticaudis did not differ between Shark Bay's two large inner gulfs, separated by the Peron Peninsula. However, significant differences were found between pairs of locations with different salinities over a spatial scale of ∼60 km within each gulf. Misclassification of samples was greatest between locations mostly in different gulfs, but with similar salinities (15-41%), and rare between adjacent locations in the same gulf with different salinities (0-5%). This is influenced by the strong correlation (ρ = 0.93) between δ18O in otoliths and the salinity gradient of the two gulfs, and further supported by a lack of correlation in the similarities of isotope compositions and distances between locations (ρ = 0.16). Fish samples from each of the different locations were composed of multiple year-classes, yet the otolith chemistry distinguished them at a minimum distance of 16 km apart, indicating that small-scale connectivity of L. laticaudis is likely during the majority of their life cycle. Physical barriers to movement of post-settlement individuals (land masses, expansive seagrass and sand) between the small, isolated reefs of Shark Bay may reduce large scale connectivity, which instead would occur mostly by egg and larval dispersal. The probable scale of connectivity of post-settlement L. laticaudis indicates that this major recreational fishing target species may be vulnerable to localised over-exploitation and negative environmental effects on population sources and sinks within this shallow embayment. Maintaining sustainable spawning biomass at scales relevant to the extent of connectivity for such a species in a World Heritage Area is an important management consideration.


Assuntos
Tubarões , Animais , Baías , Ecossistema , Peixes , Humanos , Caça , Poaceae , Austrália Ocidental
14.
Evol Appl ; 15(7): 1099-1114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35899251

RESUMO

The efficacy of fisheries management strategies depends on stock assessment and management actions being carried out at appropriate spatial scales. This requires understanding of spatial and temporal population structure and connectivity, which is challenging in weakly structured and highly connected marine populations. We carried out a population genomics study of the heavily exploited snapper (Chrysophrys auratus) along ~2600 km of the Australian coastline, with a focus on Western Australia (WA). We used 10,903 filtered SNPs in 341 individuals from eight sampling locations to characterize population structure and connectivity in snapper across WA and to assess if current spatial scales of stock assessment and management agree with evidence from population genomics. Our dataset also enabled us to investigate temporal stability in population structure as well as connectivity between WA and its nearest, eastern jurisdictional neighbour. As expected for a species influenced by the extensive ocean boundary current in the region, low genetic differentiation and high connectivity were uncovered across WA. However, we did detect strong isolation by distance and genetic discontinuities in the mid-west and south-east. The discontinuities correlate with boundaries between biogeographic regions, influenced by on-shelf oceanography, and the sites of important spawning aggregations. We also detected temporal instability in genetic structure at one of our sites, possibly due to interannual variability in recruitment in adjacent regions. Our results partly contrast with the current spatial management of snapper in WA, indicating the likely benefits of a review. This study supports the value of population genomic surveys in informing the management of weakly structured and wide-ranging marine fishery resources.

15.
Biology (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208250

RESUMO

With the commercial fishery expansion to deeper waters, some vulnerable deep-sea species have been increasingly captured. To reduce the fishing impacts on these species, exploitation and management must be based on detailed and precise information about their biology. The common mora Mora moro has become the main deep-sea species caught by longliners in the Northeast Atlantic at depths between 600 and 1200 m. In the Azores, landings have more than doubled from the early 2000s to recent years. Despite its growing importance, its life history and population structure are poorly understood, and the current stock status has not been assessed. To better determine its distribution, biology, and long-term changes in abundance and size composition, this study analyzed a fishery-dependent and survey time series from the Azores. M. moro was found on mud and rock bottoms at depths below 300 m. A larger-deeper trend was observed, and females were larger and more abundant than males. The reproductive season took place from August to February. Abundance indices and mean sizes in the catch were marked by changes in fishing fleet operational behavior. M. moro is considered vulnerable to overfishing because it exhibits a long life span, a large size, slow growth, and a low natural mortality.

16.
Evol Appl ; 14(12): 2848-2863, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950233

RESUMO

The assessment of the genetic structuring of biodiversity is crucial for management and conservation. This is particularly critical for widely distributed and highly mobile deep-water teleosts, such as hoki (Macruronus novaezelandiae). This species is significant to Maori people and supports the largest commercial fishery in New Zealand, but uncertainty about its stock structure presents a challenge for management. Here, we apply a comprehensive genomic analysis to shed light on the demographic structure of this species by (1) assembling the genome, (2) generating a catalogue of genome-wide SNPs to infer the stock structure and (3) identifying regions of the genome under selection. The final genome assembly used short and long reads and is near complete, representing 93.8% of BUSCO genes, and consisting of 566 contigs totalling 501 Mb. Whole-genome re-sequencing of 510 hoki sampled from 14 locations around New Zealand and Australia, at a read depth greater than 10×, produced 227,490 filtered SNPs. Analyses of these SNPs were able to resolve the stock structure of hoki into two genetically and geographically distinct clusters, one including the Australian and the other one all New Zealand locations, indicating genetic exchange between these regions is limited. Location differences within New Zealand samples were much more subtle (global F ST  = 0.0006), and while small and significant differences could be detected, they did not conclusively identify additional substructures. Ten putative adaptive SNPs were detected within the New Zealand samples, but these also did not geographically partition the dataset further. Contemporary and historical N e estimation suggest the current New Zealand population of hoki is large yet declining. Overall, our study provides the first genomic resources for hoki and provides detailed insights into the fine-scale population genetic structure to inform the management of this species.

17.
Biology (Basel) ; 10(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34356531

RESUMO

Elasmobranchs are globally recognized as vulnerable due to their life-history characteristics, fishing pressure, and habitat degradation. Among the skates and rays caught by commercial fisheries, the thornback ray Raja clavata is one of the most economically important in Northwest European seas. However, the scarcity of biological knowledge about this species in Azorean waters has limited the stock assessment types that can be conducted. To improve information on its habitat preferences, spatial distribution and movement pattern, growth, sex ratio, mortality, and reproduction, as well as to investigate long-term changes in abundance and size, this study analyzed approximately 25 years of fishery-dependent and independent data from the Azores. Raja clavata was mainly caught at depths up to 250 m. Most of the tagged fish were recaptured near the release point. A larger-deeper trend was found, and females were larger and more abundant than males. Life-history parameters showed that R. clavata has a long lifespan, large size, slow growth, and low natural mortality. The sustainability of its population is of concern to fisheries management and, while our findings suggested a relatively healthy stock in the Azores, a thorough increase in data quality is required to better understand the stock condition and prevent overexploitation.

18.
Adv Mar Biol ; 88: 39-89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34119046

RESUMO

Skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna are the target species of tropical tuna fisheries in the Indian Ocean, with high commercial value in the international market. High fishing pressure over the past three decades has raised concerns about their sustainability. Understanding life history strategies and stock structure is essential to determine species resilience and how they might respond to exploitation. Here we provide a comprehensive review of available knowledge on the biology, ecology, and stock structure of tropical tuna species in the Indian Ocean. We describe the characteristics of Indian Ocean tropical tuna fisheries and synthesize skipjack, yellowfin, and bigeye tuna key life history attributes such as biogeography, trophic ecology, growth, and reproductive biology. In addition, we evaluate the available literature about their stock structure using different approaches such as analysis of fisheries data, genetic markers, otolith microchemistry and tagging, among others. Based on this review, we conclude that there is a clear lack of ocean basin-scale studies on skipjack, yellowfin and bigeye tuna life history, and that regional stock structure studies indicate that the panmictic population assumption of these stocks should be investigated further. Finally, we identify specific knowledge gaps that should be addressed with priority to ensure a sustainable and effective management of these species.


Assuntos
Pesqueiros/estatística & dados numéricos , Atum , Animais , Peixes , Oceano Índico
19.
Evol Appl ; 13(8): 2130-2142, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908609

RESUMO

The three mussel species comprising the Mytilus complex are widespread across Europe and readily hybridize when they occur in sympatry, resulting in a mosaic of populations with varying genomic backgrounds. Two of these species, M. edulis and M. galloprovincialis, are extensively cultivated across Europe, with annual production exceeding 230,000 tonnes. The third species, M. trossulus, is considered commercially damaging as hybridization with this species results in weaker shells and poor meat quality. We therefore used restriction site associated DNA sequencing to generate high-resolution insights into the structure of the Mytilus complex across Europe and to resolve patterns of introgression. Inferred species distributions were concordant with the results of previous studies based on smaller numbers of genetic markers, with M. edulis and M. galloprovincialis predominating in northern and southern Europe respectively, while introgression between these species was most pronounced in northern France and the Shetland Islands. We also detected traces of M. trossulus ancestry in several northern European populations, especially around the Baltic and in northern Scotland. Finally, genome-wide heterozygosity, whether quantified at the population or individual level, was lowest in M. edulis, intermediate in M. galloprovincialis, and highest in M. trossulus, while introgression was positively associated with heterozygosity in M. edulis but negatively associated with heterozygosity in M. galloprovincialis. Our study will help to inform mussel aquaculture by providing baseline information on the genomic backgrounds of different Mytilus populations across Europe and by elucidating the effects of introgression on genome-wide heterozygosity, which is known to influence commercially important traits such as growth, viability, and fecundity in mussels.

20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(3): 511-516, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836041

RESUMO

The milkfish, Chanos chanos, is a commercially important cultured species which is distributed throughout south and southeast Asian countries. Captive breeding and seed production techniques have been standardized recently in India and there is a need for analyzing its population structure along the Indian coast. A total of 80 samples from four different locations across the Indian coast were analyzed by using ATPase 6/8 genes. Analysis revealed the existence of 25 haplotypes across populations with the haplotype diversity in the range of 0.5684-0.8053 and the nucleotide diversity varied from 0.001838 to 0.002519. The variation within and among populations accounted for 97.43% and 2.75%, respectively. The observed FST values were found to be non-significant (p > 0.05). Results from this study indicated that there is lack of genetic divergence between the populations of milkfish along the Indian coast.


Assuntos
Peixes/genética , Genes Mitocondriais/genética , Variação Genética , ATPases Mitocondriais Próton-Translocadoras/genética , Animais , Genética Populacional , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA