Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.270
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(12): 2644-2655.e16, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224812

RESUMO

Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.


Assuntos
Inflamação , Lisofosfolipídeos , Humanos , Esfingosina , Proteínas de Transporte de Ânions/fisiologia
2.
Annu Rev Immunol ; 33: 393-416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622194

RESUMO

Innate immune responses depend on timely recognition of pathogenic or danger signals by multiple cell surface or cytoplasmic receptors and transmission of signals for proper counteractions through adaptor and effector molecules. At the forefront of innate immunity are four major signaling pathways, including those elicited by Toll-like receptors, RIG-I-like receptors, inflammasomes, or cGAS, each with its own cellular localization, ligand specificity, and signal relay mechanism. They collectively engage a number of overlapping signaling outcomes, such as NF-κB activation, interferon response, cytokine maturation, and cell death. Several proteins often assemble into a supramolecular complex to enable signal transduction and amplification. In this article, we review the recent progress in mechanistic delineation of proteins in these pathways, their structural features, modes of ligand recognition, conformational changes, and homo- and hetero-oligomeric interactions within the supramolecular complexes. Regardless of seemingly distinct interactions and mechanisms, the recurring themes appear to consist of autoinhibited resting-state receptors, ligand-induced conformational changes, and higher-order assemblies of activated receptors, adaptors, and signaling enzymes through conserved protein-protein interactions.


Assuntos
Imunidade Inata/fisiologia , Animais , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
3.
Cell ; 182(2): 329-344.e19, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32589946

RESUMO

Cell surface receptors and their interactions play a central role in physiological and pathological signaling. Despite its clinical relevance, the immunoglobulin superfamily (IgSF) remains uncharacterized and underrepresented in databases. Here, we present a systematic extracellular protein map, the IgSF interactome. Using a high-throughput technology to interrogate most single transmembrane receptors for binding to 445 IgSF proteins, we identify over 500 interactions, 82% previously undocumented, and confirm more than 60 receptor-ligand pairs using orthogonal assays. Our study reveals a map of cell-type-specific interactions and the landscape of dysregulated receptor-ligand crosstalk in cancer, including selective loss of function for tumor-associated mutations. Furthermore, investigation of the IgSF interactome in a large cohort of cancer patients identifies interacting protein signatures associated with clinical outcome. The IgSF interactome represents an important resource to fuel biological discoveries and a framework for understanding the functional organization of the surfaceome during homeostasis and disease, ultimately informing therapeutic development.


Assuntos
Imunoglobulinas/metabolismo , Neoplasias/patologia , Mapas de Interação de Proteínas , Antígeno B7-H1/metabolismo , Antígeno Carcinoembrionário/metabolismo , Comunicação Celular , Análise por Conglomerados , Meios de Cultivo Condicionados/química , Células HEK293 , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Ligantes , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Mol Cell ; 82(17): 3151-3165.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907401

RESUMO

Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.


Assuntos
Rifamicinas , Tuberculose , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologia , Rifamicinas/farmacologia , Streptomyces/enzimologia
5.
Mol Cell ; 81(9): 2000-2012.e3, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705710

RESUMO

The ß-barrel assembly machine (BAM) integrates ß-barrel proteins into the outer membrane (OM) of Gram-negative bacteria. An essential BAM subunit (BamA) catalyzes integration by promoting the formation of a hybrid-barrel intermediate state between its own ß-barrel domain and that of its client proteins. Here we show that in addition to catalyzing the integration of ß-barrel proteins, BamA functions as a polypeptide export channel. In vivo structural mapping via intermolecular disulfide crosslinking showed that the extracellular "passenger" domain of a member of the "autotransporter" superfamily of virulence factors traverses the OM through the BamA ß-barrel lumen. Furthermore, we demonstrate that a highly conserved residue within autotransporter ß-barrels is required to position the passenger inside BamA to initiate translocation and that during translocation, the passenger stabilizes the hybrid-barrel state. Our results not only establish a new function for BamA but also unify the divergent functions of BamA and other "Omp85" superfamily transporters.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Sequência Conservada , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Triptofano
6.
Trends Biochem Sci ; 49(2): 134-144, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102017

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are nutrient-uptake systems found in bacteria and archaea. These evolutionary divergent transporter systems couple a substrate-binding protein (SBP) to an elevator-type secondary transporter, which is a first-of-its-kind mechanism of transport. Here, we highlight breakthrough TRAP transporter structures and recent functional data that probe the mechanism of transport. Furthermore, we discuss recent structural and biophysical studies of the ion transporter superfamily (ITS) members and highlight mechanistic principles that are relevant for further exploration of the TRAP transporter system.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana Transportadoras , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte/metabolismo , Bactérias/metabolismo , Transporte Biológico
7.
Trends Biochem Sci ; 49(4): 286-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341333

RESUMO

Eukaryotic cells learn and adapt via unknown network architectures. Recent work demonstrated a circuit of two GTPases used by cells to overcome growth factor scarcity, encouraging our view that artificial and biological intelligence share strikingly similar design principles and that cells function as deep reinforcement learning (RL) agents in uncertain environments.


Assuntos
GTP Fosfo-Hidrolases , Transdução de Sinais , GTP Fosfo-Hidrolases/metabolismo
8.
EMBO J ; 43(4): 615-636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267655

RESUMO

The dynamin-related human guanylate-binding protein 1 (GBP1) mediates host defenses against microbial pathogens. Upon GTP binding and hydrolysis, auto-inhibited GBP1 monomers dimerize and assemble into soluble and membrane-bound oligomers, which are crucial for innate immune responses. How higher-order GBP1 oligomers are built from dimers, and how assembly is coordinated with nucleotide-dependent conformational changes, has remained elusive. Here, we present cryo-electron microscopy-based structural data of soluble and membrane-bound GBP1 oligomers, which show that GBP1 assembles in an outstretched dimeric conformation. We identify a surface-exposed helix in the large GTPase domain that contributes to the oligomerization interface, and we probe its nucleotide- and dimerization-dependent movements that facilitate the formation of an antimicrobial protein coat on a gram-negative bacterial pathogen. Our results reveal a sophisticated activation mechanism for GBP1, in which nucleotide-dependent structural changes coordinate dimerization, oligomerization, and membrane binding to allow encapsulation of pathogens within an antimicrobial protein coat.


Assuntos
Anti-Infecciosos , GTP Fosfo-Hidrolases , Humanos , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/metabolismo , Dinaminas/metabolismo , Nucleotídeos/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo
9.
Annu Rev Neurosci ; 43: 207-229, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32084327

RESUMO

Activation of mechanosensitive ion channels underlies a variety of fundamental physiological processes that require sensation of mechanical force. Different mechanosensitive channels adapt distinctive structures and mechanotransduction mechanisms to fit their biological roles. How mechanosensitive channels work, especially in animals, has been extensively studied in the past decade. Here we review key findings in the functional and structural characterizations of these channels and highlight the structural features relevant to the mechanotransduction mechanism of each specific channel.


Assuntos
Citoesqueleto/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Neurônios/fisiologia , Sódio/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos
10.
EMBO J ; 41(16): e110527, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35775318

RESUMO

CodB is a cytosine transporter from the Nucleobase-Cation-Symport-1 (NCS1) transporter family, a member of the widespread LeuT superfamily. Previous experiments with the nosocomial pathogen Pseudomonas aeruginosa have shown CodB as also important for the uptake of 5-fluorocytosine, which has been suggested as a novel drug to combat antimicrobial resistance by suppressing virulence. Here we solve the crystal structure of CodB from Proteus vulgaris, at 2.4 Å resolution in complex with cytosine. We show that CodB carries out the sodium-dependent uptake of cytosine and can bind 5-fluorocytosine. Comparison of the substrate-bound structures of CodB and the hydantoin transporter Mhp1, the only other NCS1 family member for which the structure is known, highlight the importance of the hydrogen bonds that the substrates make with the main chain at the breakpoint in the discontinuous helix, TM6. In contrast to other LeuT superfamily members, neither CodB nor Mhp1 makes specific interactions with residues on TM1. Comparison of the structures provides insight into the intricate mechanisms of how these proteins transport substrates across the plasma membrane.


Assuntos
Simportadores , Transporte Biológico , Cátions , Citosina , Flucitosina , Proteínas de Membrana Transportadoras , Simportadores/genética
11.
Annu Rev Genet ; 52: 567-590, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30212237

RESUMO

Synapse formation is mediated by a surprisingly large number and wide variety of genes encoding many different protein classes. One of the families increasingly implicated in synapse wiring is the immunoglobulin superfamily (IgSF). IgSF molecules are by definition any protein containing at least one Ig-like domain, making this family one of the most common protein classes encoded by the genome. Here, we review the emerging roles for IgSF molecules in synapse formation specifically in the vertebrate brain, focusing on examples from three classes of IgSF members: ( a) cell adhesion molecules, ( b) signaling molecules, and ( c) immune molecules expressed in the brain. The critical roles for IgSF members in regulating synapse formation may explain their extensive involvement in neuropsychiatric and neurodevelopmental disorders. Solving the IgSF code for synapse formation may reveal multiple new targets for rescuing IgSF-mediated deficits in synapse formation and, eventually, new treatments for psychiatric disorders caused by altered IgSF-induced synapse wiring.


Assuntos
Encéfalo/metabolismo , Imunoglobulinas/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Sinapses/genética , Animais , Encéfalo/crescimento & desenvolvimento , Moléculas de Adesão Celular/genética , Humanos , Imunoglobulinas/classificação , Imunoglobulinas/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/imunologia
12.
Mol Cell ; 72(6): 999-1012.e6, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30449722

RESUMO

Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection. Long cytosolic dsRNA is recognized by MDA5. The cooperative assembly of MDA5 into helical filaments on dsRNA nucleates the assembly of a multiprotein type I interferon signaling platform. Here, we determined cryoelectron microscopy (cryo-EM) structures of MDA5-dsRNA filaments with different helical twists and bound nucleotide analogs at resolutions sufficient to build and refine atomic models. The structures identify the filament-forming interfaces, which encode the dsRNA binding cooperativity and length specificity of MDA5. The predominantly hydrophobic interface contacts confer flexibility, reflected in the variable helical twist within filaments. Mutation of filament-forming residues can result in loss or gain of signaling activity. Each MDA5 molecule spans 14 or 15 RNA base pairs, depending on the twist. Variations in twist also correlate with variations in the occupancy and type of nucleotide in the active site, providing insights on how ATP hydrolysis contributes to MDA5-dsRNA recognition.


Assuntos
Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Helicase IFIH1 Induzida por Interferon/ultraestrutura , RNA de Cadeia Dupla/ultraestrutura , Células HEK293 , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Simulação de Acoplamento Molecular , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
13.
Proc Natl Acad Sci U S A ; 120(10): e2210891120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36857347

RESUMO

SMAD-mediated signaling regulates apoptosis, cell cycle arrest, and epithelial-to-mesenchymal transition to safeguard tissue homeostasis. However, it remains elusive how the relatively simple pathway can determine such a broad range of cell fate decisions and how it differentiates between varying ligands. Here, we systematically investigate how SMAD-mediated responses are modulated by various ligands of the transforming growth factor ß (TGFß) family and compare these ligand responses in quiescent and proliferating MCF10A cells. We find that the nature of the phenotypic response is mainly determined by the proliferation status, with migration and cell cycle arrest being dominant in proliferating cells for all tested TGFß family ligands, whereas cell death is the major outcome in quiescent cells. In both quiescent and proliferating cells, the identity of the ligand modulates the strength of the phenotypic response proportional to the dynamics of induced SMAD nuclear-to-cytoplasmic translocation and, as a consequence, the corresponding gene expression changes. Interestingly, the proliferation state of a cell has little impact on the set of genes induced by SMAD signaling; instead, it modulates the relative cellular sensitivity to TGFß superfamily members. Taken together, diversity of SMAD-mediated responses is mediated by differing cellular states, which determine ligand sensitivity and phenotypic effects, while the pathway itself merely serves as a quantitative relay from the cell membrane to the nucleus.


Assuntos
Apoptose , Transdução de Sinais , Ligantes , Morte Celular , Fator de Crescimento Transformador beta
14.
J Biol Chem ; 300(8): 107501, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944119

RESUMO

L-Fucose (6-deoxy-L-galactose), a monosaccharide abundant in glycolipids and glycoproteins produced by mammalian cells, has been extensively studied for its role in intracellular biosynthesis and recycling of GDP-L-fucose for fucosylation. However, in certain mammalian species, L-fucose is efficiently broken down to pyruvate and lactate in a poorly understood metabolic pathway. In the 1970s, L-fucose dehydrogenase, an enzyme responsible for the initial step of this pathway, was partially purified from pig and rabbit livers and characterized biochemically. However, its molecular identity remained elusive until recently. This study reports the purification, identification, and biochemical characterization of the mammalian L-fucose dehydrogenase. The enzyme was purified from rabbit liver approximately 340-fold. Mass spectrometry analysis of the purified protein preparation identified mammalian hydroxysteroid 17-ß dehydrogenase 14 (HSD17B14) as the sole candidate enzyme. Rabbit and human HSD17B14 were expressed in HEK293T and Escherichia coli, respectively, purified, and demonstrated to catalyze the oxidation of L-fucose to L-fucono-1,5-lactone, as confirmed by mass spectrometry and NMR analysis. Substrate specificity studies revealed that L-fucose is the preferred substrate for both enzymes. The human enzyme exhibited a catalytic efficiency for L-fucose that was 359-fold higher than its efficiency for estradiol. Additionally, recombinant rat HSD17B14 exhibited negligible activity towards L-fucose, consistent with the absence of L-fucose metabolism in this species. The identification of the gene-encoding mammalian L-fucose dehydrogenase provides novel insights into the substrate specificity of enzymes belonging to the 17-ß-hydroxysteroid dehydrogenase family. This discovery also paves the way for unraveling the physiological functions of the L-fucose degradation pathway, which remains enigmatic.


Assuntos
17-Hidroxiesteroide Desidrogenases , Fucose , Coelhos , Animais , Humanos , Fucose/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Fígado/enzimologia , Fígado/metabolismo , Especificidade por Substrato , Cinética , Desidrogenases de Carboidrato/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
15.
Cancer Metastasis Rev ; 43(3): 1001-1013, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38526805

RESUMO

Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.


Assuntos
Imunoterapia , Neoplasias , Ligante OX40 , Receptores OX40 , Humanos , Ligante OX40/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptores OX40/imunologia , Receptores OX40/metabolismo , Imunoterapia/métodos , Medicina de Precisão , Animais
16.
EMBO J ; 40(7): e106103, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522633

RESUMO

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed ß protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in ß represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.


Assuntos
Adesinas Bacterianas/química , Antígenos CD/química , Antígeno Carcinoembrionário/química , Moléculas de Adesão Celular/química , Adesinas Bacterianas/metabolismo , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Células CHO , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Cricetinae , Cricetulus , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Ligação Proteica , Streptococcus agalactiae/metabolismo
17.
Genes Cells ; 29(10): 902-920, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39136356

RESUMO

Identifying specific markers of adipose stem and progenitor cells (ASPCs) in vivo is crucial for understanding the biology of white adipose tissues (WAT). PDGFRα-positive perivascular stromal cells represent the best candidates for ASPCs. This cell lineage differentiates into myofibroblasts that contribute to the impairment of WAT function. However, ASPC marker protein(s) that are functionally crucial for maintaining WAT homeostasis are unknown. We previously identified Meflin as a marker of mesenchymal stem cells (MSCs) in bone marrow and tissue-resident perivascular fibroblasts in various tissues. We also demonstrated that Meflin maintains the undifferentiated status of MSCs/fibroblasts. Here, we show that Meflin is expressed in WAT ASPCs. A lineage-tracing experiment showed that Meflin+ ASPCs proliferate in the WAT of obese mice induced by a high-fat diet (HFD), while some of them differentiate into myofibroblasts or mature adipocytes. Meflin knockout mice fed an HFD exhibited a significant fibrotic response as well as increases in adipocyte cell size and the number of crown-like structures in WAT, accompanied by impaired glucose tolerance. These data suggested that Meflin expressed by ASPCs may have a role in reducing disease progression associated with WAT dysfunction.


Assuntos
Tecido Adiposo Branco , Fibrose , Animais , Camundongos , Fibrose/metabolismo , Tecido Adiposo Branco/metabolismo , Humanos , Biomarcadores/metabolismo , Camundongos Endogâmicos C57BL , Diferenciação Celular , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout , Células-Tronco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo
18.
FASEB J ; 38(1): e23377, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133902

RESUMO

The roles of anti-Müllerian hormone (AMH) continue to expand, from its discovery as a critical factor in sex determination, through its identification as a regulator of ovarian folliculogenesis, its use in fertility clinics as a measure of ovarian reserve, and its emerging role in hypothalamic-pituitary function. In light of these actions, AMH is considered an attractive therapeutic target to address diverse reproductive needs, including fertility preservation. Here, we set out to characterize the molecular mechanisms that govern AMH synthesis and activity. First, we enhanced the processing of the AMH precursor to >90% by introducing more efficient proprotein convertase cleavage sites (RKKR or ISSRKKRSVSS [SCUT]). Importantly, enhanced processing corresponded with a dramatic increase in secreted AMH activity. Next, based on species differences across the AMH type II receptor-binding interface, we generated a series of human AMH variants and assessed bioactivity. AMHSCUT potency (EC50 4 ng/mL) was increased 5- or 10-fold by incorporating Gln484 Met/Leu535 Thr (EC50 0.8 ng/mL) or Gln484 Met/Gly533 Ser (EC50 0.4 ng/mL) mutations, respectively. Furthermore, the Gln484 Met/Leu535 Thr double mutant displayed enhanced efficacy, relative to AMHSCUT . Finally, we identified residues within the wrist pre-helix of AMH (Trp494 , Gln496 , Ser497 , and Asp498 ) that likely mediate type I receptor binding. Mutagenesis of these residues generated gain- (Trp494 Phe or Gln496 Leu) or loss- (Ser497 Ala) of function AMH variants. Surprisingly, combining activating type I and type II receptor mutations only led to modest additive increases in AMH potency/efficacy. Our study is the first to characterize AMH residues involved in type I receptor binding and suggests a step-wise receptor-complex assembly mechanism, in which enhancement in the affinity of the ligand for either receptor can increase AMH activity beyond the natural level.


Assuntos
Hormônio Antimülleriano , Hormônios Peptídicos , Feminino , Humanos , Hormônio Antimülleriano/genética , Ovário , Sequência de Aminoácidos , Fragmentos de Peptídeos
19.
J Pathol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360360

RESUMO

Hunner-type interstitial cystitis (HIC) is a chronic inflammatory disease of the urinary bladder with an unknown etiology. We conducted comprehensive immunogenomic profiling of bladder specimens obtained by biopsy and cystectomy from 37 patients with HIC. Next-generation RNA sequencing demonstrated abundant plasma cell infiltration with frequent light chain restriction in HIC-affected bladder tissue. Subsequent analysis of the B-cell receptor repertoire revealed spatial and temporal expansion of B-cell clones. The extent of B-cell clonal expansion was significantly correlated with the gene expression levels of TNFSF13 and TNFSF13B, which encode APRIL and BAFF, respectively. These findings indicate that APRIL and BAFF are the key regulators of clonal B-cell expansion in HIC and might serve as therapeutic targets in this debilitating disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

20.
Proc Natl Acad Sci U S A ; 119(32): e2207581119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917344

RESUMO

Transcription must be properly regulated to ensure dynamic gene expression underlying growth, development, and response to environmental cues. Regulation is imposed throughout the transcription cycle, and while many efforts have detailed the regulation of transcription initiation and early elongation, the termination phase of transcription also plays critical roles in regulating gene expression. Transcription termination can be driven by only a few proteins in each domain of life. Detailing the mechanism(s) employed provides insight into the vulnerabilities of transcription elongation complexes (TECs) that permit regulated termination to control expression of many genes and operons. Here, we describe the biochemical activities and crystal structure of the superfamily 2 helicase Eta, one of two known factors capable of disrupting archaeal transcription elongation complexes. Eta retains a twin-translocase core domain common to all superfamily 2 helicases and a well-conserved C terminus wherein individual amino acid substitutions can critically abrogate termination activities. Eta variants that perturb ATPase, helicase, single-stranded DNA and double-stranded DNA translocase and termination activities identify key regions of the C terminus of Eta that, when combined with modeling Eta-TEC interactions, provide a structural model of Eta-mediated termination guided in part by structures of Mfd and the bacterial TEC. The susceptibility of TECs to disruption by termination factors that target the upstream surface of RNA polymerase and potentially drive termination through forward translocation and allosteric mechanisms that favor opening of the clamp to release the encapsulated nucleic acids emerges as a common feature of transcription termination mechanisms.


Assuntos
Proteínas Arqueais , DNA Helicases , Thermococcus , Fatores de Transcrição , Terminação da Transcrição Genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia , DNA Helicases/química , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Domínios Proteicos , Thermococcus/enzimologia , Thermococcus/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA