Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Chemphyschem ; 23(22): e202200321, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36047977

RESUMO

Recently, research about droplet self-transportation on slippery surfaces has become a hotspot. However, to achieve on/off sliding control during the self-transportation process is still difficult. Herein, we report a magnetic slippery surface, and demonstrate on/off sliding control during the self-transportation of superparamagnetic droplets. The surface is prepared through integrating a substrate that has a gradient magnetic region with a layer of paraffin infused hydrophobic SiO2 nanoparticles. On the surface, a superparamagnetic droplet is pinned at room temperature (about 25 °C), while it can self-transport directionally as the temperature is increased to about 70 °C. When the temperature is cooled down again, the droplet would return to the pinned state, indicating that on/off sliding control during the self-transportation process can be achieved. Furthermore, based on the excellent controllability, controllable coalescence of two droplets from opposite direction is displayed, demonstrating its potential application in numerous areas.


Assuntos
Temperatura Baixa , Dióxido de Silício , Transição de Fase , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA