Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Physiol Rev ; 103(1): 433-513, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35951482

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of disorders characterized by early-onset, often severe epileptic seizures and EEG abnormalities on a background of developmental impairment that tends to worsen as a consequence of epilepsy. DEEs may result from both nongenetic and genetic etiologies. Genetic DEEs have been associated with mutations in many genes involved in different functions including cell migration, proliferation, and organization, neuronal excitability, and synapse transmission and plasticity. Functional studies performed in different animal models and clinical trials on patients have contributed to elucidate pathophysiological mechanisms underlying many DEEs and have explored the efficacy of different treatments. Here, we provide an extensive review of the phenotypic spectrum included in the DEEs and of the genetic determinants and pathophysiological mechanisms underlying these conditions. We also provide a brief overview of the most effective treatment now available and of the emerging therapeutic approaches.


Assuntos
Epilepsia , Animais , Epilepsia/genética , Heterogeneidade Genética , Mutação
2.
Mol Cell Neurosci ; 97: 34-42, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30796959

RESUMO

Measuring synaptic density in vivo using positron emission tomography (PET) imaging-based biomarkers targeting the synaptic vesicle protein 2A (SV2A) has received much attention recently due to its potential research and clinical applications in synaptopathies, including neurodegenerative and psychiatric diseases. Fluid-based biomarkers in proteinopathies have previously been suggested to provide information on pathology and disease status that is complementary to PET-based measures, and the same can be hypothesized with respect to SV2A. This review provides an overview of the current state of SV2A PET imaging as a biomarker of synaptic density, the potential role of fluid-based biomarkers for SV2A, and related future perspectives.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Biomarcadores/metabolismo , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/metabolismo , Sinapses/metabolismo
3.
J Inherit Metab Dis ; 41(6): 1065-1075, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30014210

RESUMO

To date, inborn errors of neurotransmitters have been defined based on the classic concept of inborn error of metabolism (IEM), and they include defects in synthesis, catabolism, and transport pathways. However, the omics era is bringing insights into new diseases and is leading to an extended definition of IEM including new categories and mechanisms. Neurotransmission takes place at the synapse, the most specialized tight junction in the brain. The concept of "synaptic metabolism" would point to the specific chemical composition and metabolic functions of the synapse. Based on these specialized functions, we aim to provide a tentative overview about the major categories of IEM susceptible to affect neurotransmission. Small molecule defects (biogenic amines and amino acids) and energy defects are amongst the most prevalent diseases reported to disturb the concentration of CSF neurotransmitters. In these IEM, the neurological phenotypes have been largely described. Disorders of complex molecules are not typically considered as diseases affecting neurotransmission. However, most of them have been recently discovered and are involved in intracellular vesiculation, trafficking, processing, and quality control mechanisms. In this large group, neurotransmission is affected in disorders of chaperones and autophagy, disorders of the synaptic vesicle, and diseases affecting pre-synaptic membranes (synthesis and remodeling of complex lipids, defects of glycosylation). Disorders of the vesicle pools, receptor trafficking, and the chronobiology of neurotransmission are potentially emerging new categories. Finally, although not considered as IEM, channelopathies are a large group of diseases disturbing neurotransmitter homeostasis. New CSF biomarkers will probably contribute to improve the diagnosis of these disorders and find new therapeutic targets.


Assuntos
Encefalopatias Metabólicas Congênitas/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Encefalopatias Metabólicas Congênitas/líquido cefalorraquidiano , Humanos
4.
Eur J Neurosci ; 43(12): 1535-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26918657

RESUMO

In the last few years, a rapidly growing number of autoantibodies targeting neuronal cell-surface antigens have been identified in patients presenting with neurological symptoms. Targeted antigens include ionotropic receptors such as N-methyl-d-aspartate receptor or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, metabotropic receptors such as mGluR1 and mGluR5, and other synaptic proteins, some of them belonging to the voltage-gated potassium channel complex. Importantly, the cell-surface location of these antigens makes them vulnerable to direct antibody-mediated modulation. Some of these autoantibodies, generally targeting ionotropic channels or their partner proteins, define clinical syndromes resembling models of pharmacological or genetic disruption of the corresponding antigen, suggesting a direct pathogenic role of the associated autoantibodies. Moreover, the associated neurological symptoms are usually immunotherapy-responsive, further arguing for a pathogenic effect of the antibodies. Some studies have shown that some patients' antibodies may have structural and functional in vitro effects on the targeted antigens. Definite proof of the pathogenicity of these autoantibodies has been obtained for just a few through passive transfer experiments in animal models. In this review we present existing and converging evidence suggesting a pathogenic role of some autoantibodies directed against neuronal cell-surface antigens observed in patients with central nervous system disorders. We describe the main clinical symptoms characterizing the patients and discuss conflicting arguments regarding the pathogenicity of these antibodies.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso Central/imunologia , Encefalite/imunologia , Animais , Doenças Autoimunes do Sistema Nervoso/etiologia , Canais de Cálcio/imunologia , Doenças do Sistema Nervoso Central/etiologia , Encefalite/etiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Proteínas/imunologia , Receptores de AMPA/imunologia , Receptores de GABA-A/imunologia , Receptores de GABA-B/imunologia , Receptores de Glicina/imunologia , Receptores de Glutamato Metabotrópico/imunologia , Receptores de N-Metil-D-Aspartato/imunologia
6.
Front Neurosci ; 16: 806990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250452

RESUMO

Synaptic gene conditions, i.e., "synaptopathies," involve disruption to genes expressed at the synapse and account for between 0.5 and 2% of autism cases. They provide a unique entry point to understanding the molecular and biological mechanisms underpinning autism-related phenotypes. Phelan-McDermid Syndrome (PMS, also known as 22q13 deletion syndrome) and NRXN1 deletions (NRXN1ds) are two synaptopathies associated with autism and related neurodevelopmental disorders (NDDs). PMS often incorporates disruption to the SHANK3 gene, implicated in excitatory postsynaptic scaffolding, whereas the NRXN1 gene encodes neurexin-1, a presynaptic cell adhesion protein; both are implicated in trans-synaptic signaling in the brain. Around 70% of individuals with PMS and 43-70% of those with NRXN1ds receive a diagnosis of autism, suggesting that alterations in synaptic development may play a crucial role in explaining the aetiology of autism. However, a substantial amount of heterogeneity exists between conditions. Most individuals with PMS have moderate to profound intellectual disability (ID), while those with NRXN1ds have no ID to severe ID. Speech abnormalities are common to both, although appear more severe in PMS. Very little is currently known about the neurocognitive underpinnings of phenotypic presentations in PMS and NRXN1ds. The Synaptic Gene (SynaG) study adopts a gene-first approach and comprehensively assesses these two syndromic forms of autism. The study compliments preclinical efforts within AIMS-2-TRIALS focused on SHANK3 and NRXN1. The aims of the study are to (1) establish the frequency of autism diagnosis and features in individuals with PMS and NRXN1ds, (2) to compare the clinical profile of PMS, NRXN1ds, and individuals with 'idiopathic' autism (iASD), (3) to identify mechanistic biomarkers that may account for autistic features and/or heterogeneity in clinical profiles, and (4) investigate the impact of second or multiple genetic hits on heterogeneity in clinical profiles. In the current paper we describe our methodology for phenotyping the sample and our planned comparisons, with information on the necessary adaptations made during the global COVID-19 pandemic. We also describe the demographics of the data collected thus far, including 25 PMS, 36 NRXN1ds, 33 iASD, and 52 NTD participants, and present an interim analysis of autistic features and adaptive functioning.

7.
Adv Protein Chem Struct Biol ; 128: 435-474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034726

RESUMO

Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.


Assuntos
Transtorno do Espectro Autista , Espinhas Dendríticas , Humanos , Plasticidade Neuronal , Neurônios , Proteoma , Sinapses
8.
Biochim Biophys Acta Biomembr ; 1864(11): 184033, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964712

RESUMO

Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.


Assuntos
Lipidômica , Sinapses , Lipídeos , Neurônios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
9.
Neuroscientist ; 28(1): 41-58, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300419

RESUMO

Dynamin superfamily proteins (DSPs) comprise a large group of GTP-ases that orchestrate membrane fusion and fission, and cytoskeleton remodeling in different cell-types. At the central nervous system, they regulate synaptic vesicle recycling and signaling-receptor turnover, allowing the maintenance of synaptic transmission. In the presynapses, these GTP-ases control the recycling of synaptic vesicles influencing the size of the ready-releasable pool and the release of neurotransmitters from nerve terminals, whereas in the postsynapses, they are involved in AMPA-receptor trafficking to and from postsynaptic densities, supporting excitatory synaptic plasticity, and consequently learning and memory formation. In agreement with these relevant roles, an important number of neurological disorders are associated with mutations and/or dysfunction of these GTP-ases. Along the present review we discuss the importance of DSPs at synapses and their implication in different neuropathological contexts.


Assuntos
Neurônios , Transmissão Sináptica , Dinaminas/metabolismo , Humanos , Plasticidade Neuronal , Neurônios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
10.
Front Cell Neurosci ; 15: 660693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140881

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease caused by degeneration of motor neurons (MNs). ALS pathogenic features include accumulation of misfolded proteins, glutamate excitotoxicity, mitochondrial dysfunction at distal axon terminals, and neuronal cytoskeleton changes. Synergies between loss of C9orf72 functions and gain of function by toxic effects of repeat expansions also contribute to C9orf72-mediated pathogenesis. However, the impact of haploinsufficiency of C9orf72 on neurons and in synaptic functions requires further examination. As the motor neurons degenerate, the disease symptoms will lead to neurotransmission deficiencies in the brain, spinal cord, and neuromuscular junction. Altered neuronal excitability, synaptic morphological changes, and C9orf72 protein and DPR localization at the synapses, suggest a potential involvement of C9orf72 at synapses. In this review article, we provide a conceptual framework for assessing the putative involvement of C9orf72 as a synaptopathy, and we explore the underlying and common disease mechanisms with other neurodegenerative diseases. Finally, we reflect on the major challenges of understanding C9orf72-ALS as a synaptopathy focusing on integrating mitochondrial and neuronal cytoskeleton degeneration as biomarkers and potential targets to treat ALS neurodegeneration.

11.
Front Cell Neurosci ; 15: 686722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248504

RESUMO

Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.

12.
J Pediatr Genet ; 10(4): 292-299, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34849274

RESUMO

The aim of this study was to evaluate the relationship between neurodevelopmental disorders, brain anomalies, and copy number variations (CNVs) and to estimate the diagnostic potential of cytogenomical microarray analysis (CMA) in individuals neuroradiologically characterized with intellectual developmental disorders (IDDs) isolated or associated with autism spectrum disorders (ASDs) and epilepsy (EPI), all of which were identified as a "synaptopathies." We selected patients who received CMA and brain magnetic resonance imaging (MRI) over a 7-year period. We divided them into four subgroups: IDD, IDD + ASD, IDD + EPI, and IDD + ASD + EPI. The diagnostic threshold of CMA was 16%. The lowest detection rate for both CMA and brain anomalies was found in IDD + ASD, while MRI was significantly higher in IDD and IDD + EPI subgroups. CMA detection rate was significantly higher in patients with brain anomalies, so CMA may be even more appropriate in patients with pathological MRI, increasing the diagnostic value of the test. Conversely, positive CMA in IDD patients should require an MRI assessment, which is more often associated with brain anomalies. Posterior fossa anomalies, both isolated and associated with other brain anomalies, showed a significantly higher rate of CMA positive results and of pathogenic CNVs. In the next-generation sequencing era, our study confirms once again the relevant diagnostic output of CMA in patients with IDD, either isolated or associated with other comorbidities. Since more than half of the patients presented brain anomalies in this study, we propose that neuroimaging should be performed in such cases, particularly in the presence of genomic imbalances.

13.
Biomark Insights ; 15: 1177271920950319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913390

RESUMO

Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.

14.
Neuron ; 101(6): 1070-1088, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897358

RESUMO

Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse. In this article, we review brain architecture and synaptic pathways that are dysregulated in FXS and ASDs, including spine architecture, signaling in synaptic plasticity, local protein synthesis, (m)RNA modifications, and degradation. mRNA repression is a powerful mechanism for the regulation of synaptic structure and efficacy. We infer that there is no single pathway that explains most of the etiology and discuss new findings and the implications for future work directed at improving our understanding of the pathogenesis of FXS and related ASDs and the design of therapeutic strategies to ameliorate these disorders.


Assuntos
Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Plasticidade Neuronal , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Animais , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Espinhas Dendríticas , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Camundongos , Processamento Pós-Transcricional do RNA , Transdução de Sinais , Transmissão Sináptica
15.
Neuron ; 103(2): 217-234.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31171447

RESUMO

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).


Assuntos
Encéfalo/citologia , Ontologia Genética , Proteômica , Software , Sinapses/fisiologia , Animais , Encéfalo/fisiologia , Bases de Dados Genéticas , Humanos , Bases de Conhecimento , Potenciais Sinápticos/fisiologia , Sinaptossomos
18.
Front Mol Neurosci ; 11: 111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674955

RESUMO

In the last 15 years, groundbreaking genetic progress has underlined a convergence onto coherent synaptic pathways for most psychiatric and neurodevelopmental disorders, which are now collectively called "synaptopathies." However, the modest size of inheritance detected so far indicates a multifactorial etiology for these disorders, underlining the key contribution of environmental effects to them. Inflammation is known to influence the risk and/or severity of a variety of synaptopathies. In particular, pro-inflammatory cytokines, produced and released in the brain by activated astrocytes and microglia, may play a pivotal role in these pathologies. Although the link between immune system activation and defects in cognitive processes is nowadays clearly established, the knowledge of the molecular mechanisms by which inflammatory mediators specifically hit synaptic components implicated in synaptopathies is still in its infancy. This review summarizes recent evidence showing that the pro-inflammatory cytokine interleukin-1ß (IL-1ß) specifically targets synaptopathy molecular substrate, leading to memory defects and pathological processes. In particular, we describe three specific pathways through which IL-1ß affects (1) synaptic maintenance/dendritic complexity, (2) spine morphology, and (3) the excitatory/inhibitory balance. We coin the term immune synaptopathies to identify this class of diseases.

19.
Brain Behav ; 7(9): e00795, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28948088

RESUMO

INTRODUCTION: In kindling, repeated electrical stimulation of certain brain areas causes progressive and permanent intensification of epileptiform activity resulting in generalized seizures. We focused on the role(s) of glutamate and a negative regulator of glutamate release, STXBP5/tomosyn-1, in kindling. METHODS: Stimulating electrodes were implanted in the amygdala and progression to two successive Racine stage 5 seizures was measured in wild-type and STXBP5/tomosyn-1-/- (Tom-/-) animals. Glutamate release measurements were performed in distinct brain regions using a glutamate-selective microelectrode array (MEA). RESULTS: Naïve Tom-/- mice had significant increases in KCl-evoked glutamate release compared to naïve wild type as measured by MEA of presynaptic release in the hippocampal dentate gyrus (DG). Kindling progression was considerably accelerated in Tom-/- mice, requiring fewer stimuli to reach a fully kindled state. Following full kindling, MEA measurements of both kindled Tom+/+ and Tom-/- mice showed significant increases in KCl-evoked and spontaneous glutamate release in the DG, indicating a correlation with the fully kindled state independent of genotype. Resting glutamate levels in all hippocampal subregions were significantly lower in the kindled Tom-/- mice, suggesting possible changes in basal control of glutamate circuitry in the kindled Tom-/- mice. CONCLUSIONS: Our studies demonstrate that increased glutamate release in the hippocampal DG correlates with acceleration of the kindling process. Although STXBP5/tomosyn-1 loss increased evoked glutamate release in naïve animals contributing to their prokindling phenotype, the kindling process can override any attenuating effect of STXBP5/tomosyn-1. Loss of this "braking" effect of STXBP5/tomosyn-1 on kindling progression may set in motion an alternative but ultimately equally ineffective compensatory response, detected here as reduced basal glutamate release.


Assuntos
Giro Denteado/metabolismo , Ácido Glutâmico , Hipocampo , Excitação Neurológica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Estimulação Elétrica/métodos , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Modelos Animais , Transmissão Sináptica
20.
Artigo em Inglês | MEDLINE | ID: mdl-27047369

RESUMO

A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different "synaptopathies". The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA