Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409584

RESUMO

In tRNA maturation, CCA-addition by tRNA nucleotidyltransferase is a unique and highly accurate reaction. While the mechanism of nucleotide selection and polymerization is well understood, it remains a mystery why bacterial and eukaryotic enzymes exhibit an unexpected and surprisingly low tRNA substrate affinity while they efficiently catalyze the CCA-addition. To get insights into the evolution of this high-fidelity RNA synthesis, the reconstruction and characterization of ancestral enzymes is a versatile tool. Here, we investigate a reconstructed candidate of a 2 billion years old CCA-adding enzyme from Gammaproteobacteria and compare it to the corresponding modern enzyme of Escherichia coli. We show that the ancestral candidate catalyzes an error-free CCA-addition, but has a much higher tRNA affinity compared with the extant enzyme. The consequence of this increased substrate binding is an enhanced reverse reaction, where the enzyme removes the CCA end from the mature tRNA. As a result, the ancestral candidate exhibits a lower catalytic efficiency in vitro as well as in vivo. Furthermore, the efficient tRNA interaction leads to a processive polymerization, while the extant enzyme catalyzes nucleotide addition in a distributive way. Thus, the modern enzymes increased their polymerization efficiency by lowering the binding affinity to tRNA, so that CCA synthesis is efficiently promoted due to a reduced reverse reaction. Hence, the puzzling and at a first glance contradicting and detrimental weak substrate interaction represents a distinct activity enhancement in the evolution of CCA-adding enzymes.


Assuntos
Nucleotídeos , RNA de Transferência , RNA de Transferência/genética
2.
Mol Biol Evol ; 38(3): 1006-1017, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095240

RESUMO

tRNAs are important players in the protein synthesis machinery, where they act as adapter molecules for translating the mRNA codons into the corresponding amino acid sequence. In a series of highly conserved maturation steps, the primary transcripts are converted into mature tRNAs. In the amoebozoan Acanthamoeba castellanii, a highly unusual evolution of some of these processing steps was identified that are based on unconventional RNA polymerase activities. In this context, we investigated the synthesis of the 3'-terminal CCA-end that is added posttranscriptionally by a specialized polymerase, the tRNA nucleotidyltransferase (CCA-adding enzyme). The majority of eukaryotic organisms carry only a single gene for a CCA-adding enzyme that acts on both the cytosolic and the mitochondrial tRNA pool. In a bioinformatic analysis of the genome of this organism, we identified a surprising multitude of genes for enzymes that contain the active site signature of eukaryotic/eubacterial tRNA nucleotidyltransferases. In vitro activity analyses of these enzymes revealed that two proteins represent bona fide CCA-adding enzymes, one of them carrying an N-terminal sequence corresponding to a putative mitochondrial target signal. The other enzymes have restricted activities and represent CC- and A-adding enzymes, respectively. The A-adding enzyme is of particular interest, as its sequence is closely related to corresponding enzymes from Proteobacteria, indicating a horizontal gene transfer. Interestingly, this unusual diversity of nucleotidyltransferase genes is not restricted to Acanthamoeba castellanii but is also present in other members of the Acanthamoeba genus, indicating an ancient evolutionary trait.


Assuntos
Acanthamoeba castellanii/enzimologia , Evolução Molecular , RNA Nucleotidiltransferases/metabolismo , Acanthamoeba castellanii/genética , Desulfovibrio/genética , Transferência Genética Horizontal , Família Multigênica , Filogenia , RNA Nucleotidiltransferases/genética
3.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936900

RESUMO

Synthesis of the CCA end of essential tRNAs is performed either by CCA-adding enzymes or as a collaboration between enzymes restricted to CC- and A-incorporation. While the occurrence of such tRNA nucleotidyltransferases with partial activities seemed to be restricted to Bacteria, the first example of such split CCA-adding activities was reported in Schizosaccharomyces pombe. Here, we demonstrate that the choanoflagellate Salpingoeca rosetta also carries CC- and A-adding enzymes. However, these enzymes have distinct evolutionary origins. Furthermore, the restricted activity of the eukaryotic CC-adding enzymes has evolved in a different way compared to their bacterial counterparts. Yet, the molecular basis is very similar, as highly conserved positions within a catalytically important flexible loop region are missing in the CC-adding enzymes. For both the CC-adding enzymes from S. rosetta as well as S. pombe, introduction of the loop elements from closely related enzymes with full activity was able to restore CCA-addition, corroborating the significance of this loop in the evolution of bacterial as well as eukaryotic tRNA nucleotidyltransferases. Our data demonstrate that partial CC- and A-adding activities in Bacteria and Eukaryotes are based on the same mechanistic principles but, surprisingly, originate from different evolutionary events.


Assuntos
Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , RNA Nucleotidiltransferases/genética , Sequência de Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Domínio Catalítico , Coanoflagelados/enzimologia , Coanoflagelados/genética , Células Eucarióticas/enzimologia , Filogenia , RNA Nucleotidiltransferases/classificação , RNA Nucleotidiltransferases/metabolismo , RNA de Transferência , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Alinhamento de Sequência
4.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717856

RESUMO

Dictyostelium discoideum, the model organism for the evolutionary supergroup of Amoebozoa, is a social amoeba that, upon starvation, undergoes transition from a unicellular to a multicellular organism. In its genome, we identified two genes encoding for tRNA nucleotidyltransferases. Such pairs of tRNA nucleotidyltransferases usually represent collaborating partial activities catalyzing CC- and A-addition to the tRNA 3'-end, respectively. In D. discoideum, however, both enzymes exhibit identical activities, representing bona-fide CCA-adding enzymes. Detailed characterization of the corresponding activities revealed that both enzymes seem to be essential and are regulated inversely during different developmental stages of D. discoideum. Intriguingly, this is the first description of two functionally equivalent CCA-adding enzymes using the same set of tRNAs and showing a similar distribution within the cell. This situation seems to be a common feature in Dictyostelia, as other members of this phylum carry similar pairs of tRNA nucleotidyltransferase genes in their genome.


Assuntos
Dictyostelium , Genoma de Protozoário , Proteínas de Protozoários , RNA Nucleotidiltransferases , Dictyostelium/enzimologia , Dictyostelium/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
5.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260740

RESUMO

The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that-when inserted into the human enzyme-confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3'-end of the tRNA primer in the catalytic core, dramatically increases the enzyme's substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.


Assuntos
Mermithoidea/enzimologia , RNA Nucleotidiltransferases/metabolismo , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Biocatálise , Humanos , Cinética , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , RNA Nucleotidiltransferases/química , RNA de Transferência/química , Especificidade por Substrato
6.
Biochem Biophys Res Commun ; 508(3): 785-790, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528393

RESUMO

A specific cytidine-cytidine-adenosine (CCA) sequence is required at the 3'-terminus of all functional tRNAs. This sequence is added during tRNA maturation or repair by tRNA nucleotidyltransferase enzymes. While most eukaryotes have a single enzyme responsible for CCA addition, some bacteria have separate CC- and A-adding activities. The fungus, Schizosaccharomyces pombe, has two genes (cca1 and cca2) that are thought, based on predicted amino acid sequences, to encode tRNA nucleotidyltransferases. Here, we show that both genes together are required to complement a Saccharomyces cerevisiae strain bearing a null mutation in the single gene encoding its tRNA nucleotidyltransferase. Using enzyme assays we show further that the purified S. pombe cca1 gene product specifically adds two cytidine residues to a tRNA substrate lacking this sequence while the cca2 gene product specifically adds the terminal adenosine residue thereby completing the CCA sequence. These data indicate that S. pombe represents the first eukaryote known to have separate CC- and A-adding activities for tRNA maturation and repair. In addition, we propose that a novel structural change in a tRNA nucleotidyltransferase is responsible for defining a CC-adding enzyme.


Assuntos
RNA Nucleotidiltransferases/metabolismo , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Sequência Conservada , Evolução Molecular , Viabilidade Microbiana , RNA Nucleotidiltransferases/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Schizosaccharomyces/crescimento & desenvolvimento , Especificidade por Substrato
7.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893886

RESUMO

For flawless translation of mRNA sequence into protein, tRNAs must undergo a series of essential maturation steps to be properly recognized and aminoacylated by aminoacyl-tRNA synthetase, and subsequently utilized by the ribosome. While all tRNAs carry a 3'-terminal CCA sequence that includes the site of aminoacylation, the additional 5'-G-1 position is a unique feature of most histidine tRNA species, serving as an identity element for the corresponding synthetase. In eukaryotes including yeast, both 3'-CCA and 5'-G-1 are added post-transcriptionally by tRNA nucleotidyltransferase and tRNAHis guanylyltransferase, respectively. Hence, it is possible that these two cytosolic enzymes compete for the same tRNA. Here, we investigate substrate preferences associated with CCA and G-1-addition to yeast cytosolic tRNAHis, which might result in a temporal order to these important processing events. We show that tRNA nucleotidyltransferase accepts tRNAHis transcripts independent of the presence of G-1; however, tRNAHis guanylyltransferase clearly prefers a substrate carrying a CCA terminus. Although many tRNA maturation steps can occur in a rather random order, our data demonstrate a likely pathway where CCA-addition precedes G-1 incorporation in S. cerevisiae. Evidently, the 3'-CCA triplet and a discriminator position A73 act as positive elements for G-1 incorporation, ensuring the fidelity of G-1 addition.


Assuntos
Células Eucarióticas/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência de Histidina/genética , Saccharomyces cerevisiae/genética , Citosol/metabolismo , Cinética , Nucleotídeos/metabolismo , Fatores de Tempo
8.
Biochim Biophys Acta Proteins Proteom ; 1866(4): 527-540, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29454993

RESUMO

Mutations in the human TRNT1 gene encoding tRNA nucleotidyltransferase (tRNA-NT), an essential enzyme responsible for addition of the CCA (cytidine-cytidine-adenosine) sequence to the 3'-termini of tRNAs, have been linked to disease phenotypes including congenital sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD) or retinitis pigmentosa with erythrocyte microcytosis. The effects of these disease-linked mutations on the structure and function of tRNA-NT have not been explored. Here we use biochemical and biophysical approaches to study how five SIFD-linked amino acid substitutions (T154I, M158V, L166S, R190I and I223T), residing in the N-terminal head and neck domains of the enzyme, affect the structure and activity of human tRNA-NT in vitro. Our data suggest that the SIFD phenotype is linked to poor stability of the T154I and L166S variant proteins, and to a combination of reduced stability and altered catalytic efficiency in the M158 V, R190I and I223T variants.


Assuntos
Anemia Sideroblástica , Doenças Genéticas Ligadas ao Cromossomo X , Temperatura Alta , Mutação de Sentido Incorreto , Nucleotidiltransferases/química , Substituição de Aminoácidos , Catálise , Estabilidade Enzimática , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Domínios Proteicos
9.
BMC Microbiol ; 16: 47, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987313

RESUMO

BACKGROUND: To allow an immediate treatment of an infection with suitable antibiotics and bactericides or fungicides, there is an urgent need for fast and precise identification of the causative human pathogens. Methods based on DNA sequence comparison like 16S rRNA analysis have become standard tools for pathogen verification. However, the distinction of closely related organisms remains a challenging task. To overcome such limitations, we identified a new genomic target sequence located in the single copy gene for tRNA nucleotidyltransferase fulfilling the requirements for a ubiquitous, yet highly specific DNA marker. In the present study, we demonstrate that this sequence marker has a higher discriminating potential than commonly used genotyping markers in pro- as well as eukaryotes, underscoring its applicability as an excellent diagnostic tool in infectology. RESULTS: Based on phylogenetic analyses, a region within the gene for tRNA nucleotidyltransferase (CCA-adding enzyme) was identified as highly heterogeneous. As prominent examples for pro- and eukaryotic pathogens, several Vibrio and Aspergillus species were used for genotyping and identification in a multiplex PCR approach followed by gel electrophoresis and fluorescence-based product detection. Compared to rRNA analysis, the selected gene region of the tRNA nucleotidyltransferase revealed a seven to 30-fold higher distinction potential between closely related Vibrio or Aspergillus species, respectively. The obtained data exhibit a superb genome specificity in the diagnostic analysis. Even in the presence of a 1,000-fold excess of human genomic DNA, no unspecific amplicons were produced. CONCLUSIONS: These results indicate that a relatively short segment of the coding region for tRNA nucleotidyltransferase has a higher discriminatory potential than most established diagnostic DNA markers. Besides identifying microbial pathogens in infections, further possible applications of this new marker are food hygiene controls or metagenome analyses.


Assuntos
Aspergillus/genética , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Proteínas Fúngicas/genética , Micoses/microbiologia , RNA Nucleotidiltransferases/genética , Vibrio/genética , Aspergillus/química , Aspergillus/classificação , Aspergillus/enzimologia , Proteínas de Bactérias/química , Proteínas Fúngicas/química , Variação Genética , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , RNA Nucleotidiltransferases/química , Alinhamento de Sequência , Vibrio/química , Vibrio/classificação , Vibrio/enzimologia
10.
RNA Biol ; 12(4): 435-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849199

RESUMO

CCA-adding enzymes are highly specific RNA polymerases that synthesize and maintain the sequence CCA at the tRNA 3'-end. This nucleotide triplet is a prerequisite for tRNAs to be aminoacylated and to participate in protein biosynthesis. During CCA-addition, a set of highly conserved motifs in the catalytic core of these enzymes is responsible for accurate sequential nucleotide incorporation. In the nucleotide binding pocket, three amino acid residues form Watson-Crick-like base pairs to the incoming CTP and ATP. A reorientation of these templating amino acids switches the enzyme's specificity from CTP to ATP recognition. However, the mechanism underlying this essential structural rearrangement is not understood. Here, we show that motif C, whose actual function has not been identified yet, contributes to the switch in nucleotide specificity during polymerization. Biochemical characterization as well as EPR spectroscopy measurements of the human enzyme reveal that mutating the highly conserved amino acid position D139 in this motif interferes with AMP incorporation and affects interdomain movements in the enzyme. We propose a model of action, where motif C forms a flexible spring element modulating the relative orientation of the enzyme's head and body domains to accommodate the growing 3'-end of the tRNA. Furthermore, these conformational transitions initiate the rearranging of the templating amino acids to switch the specificity of the nucleotide binding pocket from CTP to ATP during CCA-synthesis.


Assuntos
Domínio Catalítico , Mutação , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/metabolismo , RNA de Transferência/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , RNA Nucleotidiltransferases/genética , RNA de Transferência/metabolismo , Especificidade por Substrato/genética
11.
Biochim Biophys Acta ; 1834(10): 2097-106, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872483

RESUMO

We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures.


Assuntos
Arginina/química , Ácido Aspártico/química , RNA Nucleotidiltransferases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Triptofano/química , Monofosfato de Adenosina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Arginina/genética , Ácido Aspártico/genética , Domínio Catalítico , Monofosfato de Citidina/química , Temperatura Alta , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fenótipo , Estrutura Secundária de Proteína , RNA Nucleotidiltransferases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Triptofano/genética
12.
Microb Genom ; 7(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502308

RESUMO

Poly(A) polymerases (PAPs) and tRNA nucleotidyltransferases belong to a superfamily of nucleotidyltransferases and modify RNA 3'-ends. The product of the pcnB gene, PAP I, has been characterized in a few ß-, γ- and δ-Proteobacteria. Using the PAP I signature sequence, putative PAPs were identified in bacterial species from the α- and ε-Proteobacteria and from four other bacterial phyla (Firmicutes, Actinobacteria, Bacteroidetes and Aquificae). Phylogenetic analysis, alien index and G+C content calculations strongly suggest that the PAPs in the species identified in this study arose by horizontal gene transfer from the ß- and γ-Proteobacteria.


Assuntos
Betaproteobacteria/enzimologia , Gammaproteobacteria/enzimologia , Polinucleotídeo Adenililtransferase/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Composição de Bases , Betaproteobacteria/classificação , Betaproteobacteria/genética , Evolução Molecular , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Transferência Genética Horizontal , Filogenia
13.
C R Biol ; 343(2): 177-209, 2020 Oct 09.
Artigo em Francês | MEDLINE | ID: mdl-33108121

RESUMO

In the fight against the spread of COVID-19 the emphasis is on vaccination or on reactivating existing drugs used for other purposes. The tight links that necessarily exist between the virus as it multiplies and the metabolism of its host are systematically ignored. Here we show that the metabolism of all cells is coordinated by the availability of a core building block of the cell's genome, cytidine triphosphate (CTP). This metabolite is also the key to the synthesis of the viral envelope and to the translation of its genome into proteins. This unique role explains why evolution has led to the early emergence in animals of an antiviral immunity enzyme, viperin, that synthesizes a toxic analogue of CTP. The constraints arising from this dependency guide the evolution of the virus. With this in mind, we explored the real-time experiment taking place before our eyes using probabilistic modelling approaches to the molecular evolution of the virus. We have thus followed, almost on a daily basis, the evolution of the composition of the viral genome to link it to the progeny produced over time, particularly in the form of blooms that sparked a firework of viral mutations. Some of those certainly increase the propagation of the virus. This led us to make out the critical role in this evolution of several proteins of the virus, such as its nucleocapsid N, and more generally to begin to understand how the virus ties up the host metabolism to its own benefit. A way for the virus to escape CTP-dependent control in cells would be to infect cells that are not expected to grow, such as neurons. This may account for unexpected body sites of viral development in the present epidemic.


Dans la lutte contre la propagation de la COVID-19 l'accent est mis sur la vaccination, d'une part, et sur le redéploiement de traitements utilisés pour d'autres usages, d'autre part. Les liens qui existent nécessairement entre la multiplication du virus et le métabolisme de l'hôte sont systématiquement ignorés. Ici nous montrons que le métabolisme de toutes les cellules est coordonné par l'accessibilité d'un composant central du génome cellulaire, le triphosphate de cytidine (CTP). Ce métabolite est aussi la clé de la synthèse de l'enveloppe virale et de la traduction de son génome en protéines. Ce rôle unique explique pourquoi l'évolution a fait apparaître très tôt chez les animaux une activité enzymatique de l'immunité antivirale, la vipérine, destinée à synthétiser un analogue toxique du CTP. Les contraintes nées de cette dépendance orientent l'évolution du virus. Avec cette servitude à l'esprit, nous avons exploré l'expérience en vraie grandeur qui se déroule sous nos yeux au moyen d'approches de modélisation probabiliste de l'évolution moléculaire du virus. Nous avons ainsi suivi, presque au jour le jour, le devenir de la composition du génome viral pour la relier à la descendance produite au cours du temps, en particulier sous la forme d'efflorescences où apparaît un véritable feu d'artifice de mutations virales. Certaines d'entre elles augmentent certainement la propagation du virus. Cela nous conduit à proposer un rôle important dans cette évolution à certaines protéines du virus, comme celle de la nucléocapside N et plus généralement de commencer à comprendre comment le virus asservit à son bénéfice le métabolisme de l'hôte. L'un des moyens possibles pour le virus d'échapper au contrôle par le CTP serait d'infecter des cellules qui ne se multiplient pas, comme les neurones. Cela pourrait expliquer les sites de développement viral inattendus qu'on observe dans l'épidémie actuelle.


Assuntos
Antivirais/farmacologia , Betacoronavirus/fisiologia , Evolução Biológica , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Animais , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Evolução Molecular , Humanos , Pandemias , SARS-CoV-2
14.
Biochim Biophys Acta Proteins Proteom ; 1867(6): 616-626, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959222

RESUMO

The I326T mutation in the TRNT1 gene encoding human tRNA nucleotidyltransferase (tRNA-NT) is linked to a relatively mild form of SIFD. Previous work indicated that the I326T variant was unable to incorporate AMP into tRNAs in vitro, however, expression of the mutant allele from a strong heterologous promoter supported in vivo CCA addition to both cytosolic and mitochondrial tRNAs in a yeast strain lacking tRNA-NT. To address this discrepancy, we determined the biochemical and biophysical characteristics of the I326T variant enzyme and the related variant, I326A. Our in vitro analysis revealed that the I326T substitution decreases the thermal stability of the enzyme and causes a ten-fold reduction in enzyme activity. We propose that the structural changes in the I326T variant that lead to these altered parameters result from a rearrangement of helices within the body domain of the protein which can be probed by the inability of the monomeric enzyme to form a covalent dimer in vitro mediated by C373. In addition, we confirm that the effects of the I326T or I326A substitutions are relatively mild in vivo by demonstrating that the mutant alleles support both mitochondrial and cytosolic CCA-addition in yeast.


Assuntos
Substituição de Aminoácidos , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Anemia Sideroblástica/genética , Domínio Catalítico , Estabilidade Enzimática , Humanos , Modelos Moleculares , Nucleotidiltransferases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
15.
Gene ; 612: 12-18, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27575455

RESUMO

In eukaryotic cells tRNA synthesis is negatively regulated by the protein Maf1, conserved from yeast to humans. Maf1 from yeast Saccharomyces cerevisiae mediates repression of trna transcription when cells are transferred from medium with glucose to medium with glycerol, a non-fermentable carbon source. The strain with deleted gene encoding Maf1 (maf1Δ) is viable but accumulates tRNA precursors. In this study tRNA precursors were analysed by RNA-Seq and Northern hybridization in wild type strain and maf1Δ mutant grown in glucose medium or upon shift to repressive conditions. A negative effect of maf1Δ mutant on the addition of the auxiliary CCA nucleotides to the 3' end of pre-tRNAs was observed in cells shifted to unfavourable growth conditions. This effect was reduced by overexpression of the yeast CCA1 gene encoding ATP(CTP):tRNA nucleotidyltransferase. The CCA sequence at the 3' end is important for export of tRNA precursors from the nucleus and essential for tRNA charging with amino acids. Data presented here indicate that CCA-addition to intron-containing end-processed tRNA precursors is a limiting step in tRNA maturation when there is no Maf1 mediated RNA polymerase III (Pol III) repression. The correlation between CCA synthesis and Pol III regulation by Maf1 could be important in coordination of tRNA transcription, processing and regulation of translation.


Assuntos
RNA Polimerase III/metabolismo , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Transferência/química
16.
Front Genet ; 5: 109, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24822055

RESUMO

Conventional tRNAs have highly conserved sequences, four-armed cloverleaf secondary structures, and L-shaped tertiary structures. However, metazoan mitochondrial tRNAs contain several exceptional structures. Almost all tRNAs(Ser) for AGY/N codons lack the D-arm. Furthermore, in some nematodes, no four-armed cloverleaf-type tRNAs are present: two tRNAs(Ser) without the D-arm and 20 tRNAs without the T-arm are found. Previously, we showed that in nematode mitochondria, an extra elongation factor Tu (EF-Tu) has evolved to support interaction with tRNAs lacking the T-arm, which interact with C-terminal domain 3 in conventional EF-Tu. Recent mitochondrial genome analyses have suggested that in metazoan lineages other than nematodes, tRNAs without the T-arm are present. Furthermore, even more simplified tRNAs are predicted in some lineages. In this review, we discuss mitochondrial tRNAs with divergent structures, as well as protein factors, including EF-Tu, that support the function of truncated metazoan mitochondrial tRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA