Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 64(5): 859-874, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867011

RESUMO

Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Mitocôndrias/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Neoplasias/enzimologia , Neoplasias/patologia , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
2.
Mol Carcinog ; 57(1): 70-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28876464

RESUMO

Hepatocellular carcinoma (HCC) is one of the major health problems with increasing incidence worldwide. We report the elevation in transthyretin (TTR) expression following HCC induction using diethylnitrosamine (DEN) and 2-aminoacetylfluorine (2-AAF) in male Wistar rats. The increase in its expression took place at very early stage and remained elevated throughout HCC progression. The analysis of TTR gene in HCC bearing rats revealed four novel mutations that alter three amino acids at positions 61, 100, and 115. While these mutations do not directly affect the binding of TTR to thyroxine (T4 ), the mutation in amino acid 115 interferes with TTR tetramer formation that leads to its accumulation. Further, the mutated TTR is unable to cleave C-terminal of apolipoprotein A1 (APOA1) that results in abnormal lipid metabolism. This has correlation with development of liver cirrhosis and HCC. Furthermore, the mutated TTR seems to have potential as biomarker for early detection of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Predisposição Genética para Doença/genética , Neoplasias Hepáticas/genética , Mutação , Pré-Albumina/genética , 2-Acetilaminofluoreno , Sequência de Aminoácidos , Animais , Apolipoproteína A-I/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Masculino , Pré-Albumina/metabolismo , Ligação Proteica , Proteômica/métodos , Ratos Wistar , Homologia de Sequência de Aminoácidos , Tiroxina/metabolismo
3.
Autophagy ; 18(6): 1416-1432, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34720024

RESUMO

Altered glutamine metabolism is an important aspect of cancer metabolic reprogramming. The GLS isoform GAC (glutaminase C), the rate-limiting enzyme in glutaminolysis, plays a vital role in cancer initiation and progression. Our previous studies demonstrated that phosphorylation of GAC was essential for its high enzymatic activity. However, the molecular mechanisms for GAC in maintaining its high enzymatic activity and protein stability still need to be further clarified. FAIM/FAIM1 (Fas apoptotic inhibitory molecule) is known as an important anti-apoptotic protein, but little is known about its function in tumorigenesis. Here, we found that knocking down FAIM induced macroautophagy/autophagy through suppressing the activation of the MTOR pathway in lung adenocarcinoma. Further studies demonstrated that FAIM could promote the tetramer formation of GAC through increasing PRKCE/PKCε-mediated phosphorylation. What's more, FAIM also stabilized GAC through sequestering GAC from degradation by protease ClpXP. These effects increased the production of α-ketoglutarate, leading to the activation of MTOR. Besides, FAIM also promoted the association of ULK1 and MTOR and this further suppressed autophagy induction. These findings discovered new functions of FAIM and elucidated an important molecular mechanism for GAC in maintaining its high enzymatic activity and protein stability.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Reguladoras de Apoptose , Glutamina , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Serina-Treonina Quinases TOR
4.
Mol Plant ; 9(7): 1004-17, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27142778

RESUMO

Aquaporin (AQP) is a water channel protein found in various subcellular membranes of both prokaryotic and eukaryotic cells. The physiological functions of AQPs have been elucidated in many organisms. However, understanding their biogenesis remains elusive, particularly regarding how they assemble into tetramers. Here, we investigated the amino acid residues involved in the tetramer formation of the Arabidopsis plasma membrane AQP AtPIP2;1 using extensive amino acid substitution mutagenesis. The mutant proteins V41A/E44A, F51A/L52A, F87A/I91A, F92A/I93A, V95A/Y96A, and H216A/L217A, harboring alanine substitutions in the transmembrane (TM) helices of AtPIP2;1 polymerized into multiple oligomeric complexes with a variable number of subunits greater than four. Moreover, these mutant proteins failed to traffic to the plasma membrane, instead of accumulating in the endoplasmic reticulum (ER). Structure-based modeling revealed that these residues are largely involved in interactions between TM helices within monomers. These results suggest that inter-TM interactions occurring both within and between monomers play crucial roles in tetramer formation in the AtPIP2;1 complex. Moreover, the assembly of AtPIP2;1 tetramers is critical for their trafficking from the ER to the plasma membrane, as well as water permeability.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Retículo Endoplasmático/metabolismo , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA