Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 22(7): 230-239, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34053170

RESUMO

The Conserved Oligomeric Golgi (COG) complex is an eight subunit protein complex associated with Golgi membranes. Genetic defects affecting individual COG subunits cause congenital disorders of glycosylation (CDGs), due to mislocalization of Golgi proteins involved in glycosylation mechanisms. While the resulting defects in N-and O-glycosylation have been extensively studied, no corresponding study of proteoglycan (PG) synthesis has been undertaken. We here show that glycosaminoglycan (GAG) modification of PGs is significantly reduced, regardless which COG subunit that is missing in HEK293T cells. Least reduction was observed for cells lacking COG1 and COG8 subunits, that bridge the A and B lobes of the complex. Lack of these subunits did not reduce GAG chain lengths of secreted PGs, which was reduced in cells lacking any other subunit (COG2-7). COG3 knock out (KO) cells had particularly reduced ability to polymerize GAG chains. For cell-associated GAGs, the mutant cell lines, except COG4 and COG7 KO, displayed longer GAG chains than wild-type cells, indicating that COG subunits play a role in cellular turnover of PGs. In light of the important roles PGs play in animal development, the effects KO of individual COG subunits have on GAG synthesis could explain the variable severity of COG associated CDGs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Complexo de Golgi , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Glicosilação , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Proteoglicanas/metabolismo
2.
Mol Microbiol ; 117(6): 1308-1316, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434857

RESUMO

There has been considerable recent interest in the life cycle of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of the Covid-19 pandemic. Practically every step in CoV replication-from cell attachment and uptake via genome replication and expression to virion assembly has been considered as a specific event that potentially could be targeted by existing or novel drugs. Interference with cellular egress of progeny viruses could also be adopted as a possible therapeutic strategy; however, the situation is complicated by the fact that there is no broad consensus on how CoVs find their way out of their host cells. The viral nucleocapsid, consisting of the genomic RNA complexed with nucleocapsid proteins obtains a membrane envelope during virus budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. From here, several alternative routes for CoV extracellular release have been proposed. Strikingly, recent studies have shown that CoV infection leads to the disassembly of the Golgi ribbon and the mobilization of host cell compartments and protein machineries that are known to promote Golgi-independent trafficking to the cell surface. Here, we discuss the life cycle of CoVs with a special focus on different possible pathways for virus egress.


Assuntos
COVID-19 , Pandemias , Animais , Humanos , Estágios do Ciclo de Vida , SARS-CoV-2 , Proteínas do Envelope Viral/genética
3.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982865

RESUMO

The main component of blood and lymphatic vessels is the endothelium covering their luminal surface. It plays a significant role in many cardiovascular diseases. Tremendous progress has been made in deciphering of molecular mechanisms involved into intracellular transport. However, molecular machines are mostly characterized in vitro. It is important to adapt this knowledge to the situation existing in tissues and organs. Moreover, contradictions have accumulated within the field related to the function of endothelial cells (ECs) and their trans-endothelial pathways. This has induced necessity for the re-evaluation of several mechanisms related to the function of vascular ECs and intracellular transport and transcytosis there. Here, we analyze available data related to intracellular transport within ECs and re-examine several hypotheses about the role of different mechanisms in transcytosis across ECs. We propose a new classification of vascular endothelium and hypotheses related to the functional role of caveolae and mechanisms of lipid transport through ECs.


Assuntos
Células Endoteliais , Transcitose , Células Endoteliais/metabolismo , Transporte Biológico/fisiologia , Cavéolas/metabolismo , Membranas Intracelulares/metabolismo , Endotélio Vascular/metabolismo
4.
Cell Struct Funct ; 47(1): 19-30, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35125375

RESUMO

Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA or self-DNA leaked from mitochondria/nuclei. In response to the emergence of such DNAs in the cytosol, STING relocates from the endoplasmic reticulum (ER) to the Golgi, and activates TANK-binding kinase 1 (TBK1), a cytosolic kinase essential for the activation of STING-dependent downstream signalling. To understand at which subcellular compartments TBK1 becomes associated with STING, we generated cells stably expressing fluorescent protein-tagged STING (mNeonGreen-STING) and TBK1 (TBK1-mScarletI). We found that after STING stimulation, TBK1 became associated with the trans-Golgi network (TGN), not the other parts of the Golgi. STING variants that constitutively induce the type I interferon response have been identified in patients with autoinflammatory diseases named "STING-associated vasculopathy with onset in infancy (SAVI)". Even in cells expressing these constitutively active STING variants, TBK1 was found to be associated with TGN, not the other parts of the Golgi. These results suggest that TGN acts as a specific platform where STING associates with and activates TBK1.Key words: the Golgi, membrane traffic, innate immunity, STING.


Assuntos
Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Rede trans-Golgi , Retículo Endoplasmático , Complexo de Golgi , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
5.
Cell Tissue Res ; 383(3): 1167-1182, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33237480

RESUMO

The acrosome is a special organelle that develops from the Golgi apparatus and the endolysosomal compartment in the spermatids. Centromere protein E (CENP-E) is an essential kinesin motor in chromosome congression and alignment. This study is aimed at investigating the roles and mechanisms of kinesin-7 CENP-E in the formation of the acrosome during spermatogenesis. Male ICR mice are injected with GSK923295 for long-term inhibition of CENP-E. Chemical inhibition and siRNA-mediated knockdown of CENP-E are carried out in the GC-2 spd cells. The morphology of the acrosomes is determined by the HE staining, immunofluorescence, and transmission electron microscopy. We have identified CENP-E is a key factor in the formation and structural maintenance of the acrosome during acrosome biogenesis. Long-term inhibition of CENP-E by GSK923295 results in the asymmetric acrosome and the dispersed acrosome. CENP-E depletion leads to the malformation of the Golgi complex and abnormal targeting of the PICK1- and PIST-positive Golgi-associated vesicles. Our findings uncover an essential role of CENP-E in membrane trafficking and structural organization of the acrosome in the spermatids during spermatogenesis. Our results shed light on the molecular mechanisms involved in vesicle trafficking and architecture maintenance of the acrosome.


Assuntos
Acrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Espermátides , Espermatogênese , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transporte Proteico , Espermátides/citologia , Espermátides/metabolismo
6.
Cell Struct Funct ; 43(2): 119-127, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29899178

RESUMO

The Golgi apparatus is a central station for protein trafficking in eukaryotic cells. A widely accepted model of protein transport within the Golgi apparatus is cisternal maturation. Each cisterna has specific resident proteins, which are thought to be maintained by COPI-mediated transport. However, the mechanisms underlying specific sorting of these Golgi-resident proteins remain elusive. To obtain a clue to understand the selective sorting of vesicles between the Golgi cisterenae, we investigated the molecular arrangements of the conserved oligomeric Golgi (COG) subunits in yeast cells. Mutations in COG subunits cause defects in Golgi trafficking and glycosylation of proteins and are causative of Congenital Disorders of Glycosylation (CDG) in humans. Interactions among COG subunits in cytosolic and membrane fractions were investigated by co-immunoprecipitation. Cytosolic COG subunits existed as octamers, whereas membrane-associated COG subunits formed a variety of subcomplexes. Relocation of individual COG subunits to mitochondria resulted in recruitment of only a limited number of other COG subunits to mitochondria. These results indicate that COG proteins function in the forms of a variety of subcomplexes and suggest that the COG complex does not comprise stable tethering without other interactors.Key words: The Golgi apparatus, COG complex, yeast, membrane trafficking, multi-subunit tethering complex.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Humanos , Mapas de Interação de Proteínas , Subunidades Proteicas/metabolismo , Transporte Proteico
7.
J Cell Physiol ; 233(4): 2911-2919, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28574583

RESUMO

The Golgi apparatus (GA) is a ribbon-like system of stacks which consist of multiple closely apposed flattened cisternae and vesicles usually localized in the juxta-nuclear area. As for the biological functions, the GA plays a major role in protein biosynthesis, post-translational modification, and sorting protein from ER to plasma membrane and other destinations. Structural changes and functional disorder of the GA is associated with various diseases. Moreover, increasing evidence revealed that swelling, poor development, and other morphological alterations of the GA are linked to cardiovascular diseases such as heart failure (HF), arrhythmia, and dilated cardiomyopathy. Furthermore, dysfunction of the GA is also related to cardiovascular diseases since the GA is extremely responsible for transport, glycosylation, biosynthesis, and subcellular distribution of cardiovascular proteins. This review gives a brief overview of the intricate relationship between the GA and cardiovascular diseases. In addition, we provide a further prospective that the GA may provide diagnosis reference for cardiovascular diseases, and changes in the ultrastructure and morphology of the GA such as swelling, poor development, and fragmentation may serve as a reliable index for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Complexo de Golgi/metabolismo , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Glicosilação , Humanos , Modelos Biológicos , Proteínas/metabolismo
8.
Biochem Biophys Res Commun ; 503(1): 138-145, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29870684

RESUMO

Stimulator of interferon genes (STING) is essential for the type I interferon and pro-inflammatory responses against DNA pathogens. In response to the presence of cytosolic DNA, STING translocates from the endoplasmic reticulum (ER) to the Golgi, and activates TANK-binding kinase 1 (TBK1), a cytosolic kinase that is essential for the activation of STING-dependent downstream signalling. The organelles where TBK1 binds to STING remain unknown. Here we show that TBK1 binds to STING at the Golgi, not at the ER. Treatment with brefeldin A, an agent to block ER-to-Golgi traffic, or knockdown of Sar1, a small GTPase that regulates coat protein complex II (COP-II)-mediated ER-to-Golgi traffic, inhibited the binding of TBK1 to STING. Endogenous TBK1 was recruited to the Golgi when STING was transported to the Golgi, as shown by immunofluorescence microscopy. STING variants that constitutively induce the type I interferon response were found in patients with autoinflammatory diseases. Even these disease-causative STING variants could not bind to TBK1 when the STING variants were trapped in the ER. These results demonstrate that the Golgi is an organelle at which STING recruits and activates TBK1 for triggering the STING-dependent type I interferon response.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Brefeldina A/farmacologia , Células Cultivadas , Citosol/metabolismo , Exocitose , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
9.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37524262

RESUMO

KIFC1, a member of kinesin-14 subfamily motors, is essential for meiotic cell division and acrosome formation during spermatogenesis. However, the functions of KIFC1 in the formation and maintenance of the acrosome in male germ cells remain to be elucidated. In this study, we report the structural deformities of acrosomes in the in vivo KIFC1 inhibition mouse models. The proacrosomal vesicles diffuse into the cytoplasm and form atypical acrosomal granules. This phenotype is consistent with globozoospermia patients and probably results from the failure of the Golgi-derived vesicle trafficking and actin filament organization. Moreover, the multinucleated and undifferentiated spermatogenic cells in the epidydimal lumen after KIFC1 inhibition reveal the specific roles of KIFC1 in regulating post-meiotic maturation. Overall, our results uncover KIFC1 as an essential regulator in the trafficking, fusion and maturation of acrosomal vesicles during spermiogenesis.

10.
Microscopy (Oxf) ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930813

RESUMO

The two-dimensional observation of ultrathin sections from resin-embedded specimens provides insufficient understanding of the three-dimensional (3D) morphological information of membranous organelles. The osmium maceration method, developed by Professor Tanaka's group over 40 years ago, is the only technique that allows direct observation of the 3D ultrastructure of membrane systems using scanning electron microscopy (SEM), without the need for any reconstruction process. With this method, the soluble cytoplasmic proteins are removed from the freeze-cracked surface of cells while preserving the integrity of membranous organelles, achieved by immersing tissues in a diluted osmium solution for several days. By employing the maceration method, researchers using SEM have revealed the 3D ultrastructure of organelles such as the Golgi apparatus, mitochondria, and endoplasmic reticulum in various cell types. Recently, we have developed new SEM techniques based on the maceration method to explore further possibilities for this method. These include: (1) a rapid osmium maceration method that reduces the reaction duration of the procedure, (2) a combination method that combines agarose embedding with osmium maceration to elucidate the 3D ultrastructure of organelles in free and cultured cells, and (3) a correlative immunofluorescence and SEM technique that combines cryosectioning with the osmium maceration method, enabling the correlation of the immunocytochemical localization of molecules with the 3D ultrastructure of organelles. In this paper, we review the novel osmium maceration methods described above and discuss their potential and future directions in the field of biology and biomedical research.

11.
HGG Adv ; 2(4): 100051, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-35047842

RESUMO

The bone disorder osteogenesis imperfecta (OI) is genetically heterogeneous. Most affected individuals have an autosomal dominant disorder caused by heterozygous variants in either of the type I collagen genes (COL1A1 or COL1A2). To date, two reports have linked Mesoderm Development LRP Chaperone (MESD) to autosomal recessive OI type XX. Four different biallelic pathogenic variants in MESD were shown to cause a progressively deforming phenotype, associated with recurrent fractures and oligodontia in five individuals in five families. Recently, compound heterozygosity for a frameshift predicted to lead to a premature termination codon in exon 2 of the 3-exon gene and a second frameshift in the terminal exon in MESD were detected in three stillbirths in one family with severe OI consistent with the neonatal lethal phenotype. We have identified four additional individuals from four independent families with biallelic variants in MESD: the earlier reported c.632dupA (p.Lys212Glufs∗19) and c.676C>T (p.Arg226∗)-which are associated with a severe form of OI-and one new pathogenic variant, c.603-606delTAAA (p.Asn201Lysfs∗15), which causes a neonatal lethal form of OI. MESD acts in the WNT signaling pathway, where it is thought to play a role in the folding of the WNT co-receptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/LRP6) and in chaperoning their transit to the cell surface. Our report broadens the phenotypic and genetic spectrum of MESD-related OI, provides additional insight into the pathogenic pathways, and underscores the necessity of MESD for normal WNT signaling in bone formation.

12.
Mol Brain ; 13(1): 105, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711564

RESUMO

Proper dendrite morphogenesis and neuronal migration are crucial for cerebral cortex development and neural circuit formation. In this study, we sought to determine if the histone deacetylase HDAC6 plays a role in dendrite development and neuronal migration of pyramidal neurons during cerebral cortex development. It was observed that knockdown of HDAC6 leads to defective dendrite morphogenesis and abnormal Golgi polarization in vitro, and the expression of wild type cortactin or deacetyl-mimetic cortactin 9KR rescued the defective phenotypes of the HDAC6 knockdown neurons. This suggests that HDAC6 promotes dendritic growth and Golgi polarization through cortactin deacetylation in vitro. We also demonstrated that ectopic expression of SIRT2, a cytoplasmic NAD+ - dependent deacetylase, suppresses the defects of HDAC6 knockdown neurons. These results indicate that HDAC6 and SIRT2 may be functionally redundant during dendrite development. Neurons transfected with both HDAC6 and SIRT2 shRNA or acetyl-mimetic cortactin 9KQ showed slow radial migration compared to the control cells during cerebral cortex development. Furthermore, a large portion of cortactin 9KQ-expressing pyramidal neurons at layer II/III in the cerebral cortex failed to form an apical dendrite toward the pial surface and had an increased number of primary dendrites, and the percentage of neurons with dendritic Golgi decreased in cortactin 9KQ-expressing cells, compared to control neurons. Taken together, this study suggests that HDAC6 and SIRT2 regulate neuronal migration and dendrite development through cortactin deacetylation in vivo.


Assuntos
Movimento Celular , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Cortactina/metabolismo , Dendritos/metabolismo , Desacetilase 6 de Histona/metabolismo , Neurogênese , Sirtuína 2/metabolismo , Acetilação , Animais , Complexo de Golgi/metabolismo , Hipocampo/citologia , Camundongos Endogâmicos ICR , Ratos , Tubulina (Proteína)/metabolismo
13.
Oncotarget ; 8(22): 36469-36483, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28430595

RESUMO

The Golgi apparatus is the central organelle along the eukaryotic secretory and endocytic pathway. In non-polarized mammalian cells, the Golgi complex is usually located proximal to the nucleus at the cell center and is closely associated with the microtubule organizing center. Microtubule networks are essential in the organization and central localization of the Golgi apparatus, but the molecular basis underlying these processes are poorly understood. Here we reveal that minus end-directed kinesin-14 KIFC1 proteins are required for the structural integrity and positioning of the Golgi complex in non-polarized mammalian cells. Remarkably, we found that the motor domain of kinesin-14 KIFC1 regulates the recognition and binding of the Golgi and KIFC1 also statically binds to the microtubules via its tail domain. These findings reveal a new stationary binding model that kinesin-14 KIFC1 proteins function as crosslinkers between the Golgi apparatus and the microtubules and contribute to the central positioning and structural maintenance of the Golgi apparatus.


Assuntos
Complexo de Golgi/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Células Cultivadas , Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Cinesinas/química , Microtúbulos/metabolismo , Modelos Biológicos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
14.
Methods Mol Biol ; 1496: 13-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631998

RESUMO

The study of polarized protein trafficking in live neurons is critical for understanding neuronal structure and function. Given the complex anatomy of neurons and the numerous trafficking pathways that are active in them, however, visualization of specific vesicle populations leaving the Golgi complex presents unique challenges. Indeed, several approaches used in non-polarized cells, and even in polarized epithelial cells, have been less successful in neurons. Here, we describe an adaptation of the recently developed Retention Using Selective Hooks (RUSH) system (Boncompain et al., Nat Methods 9:493-498, 2012), previously used in non-polarized cells, to analyze the polarized sorting of proteins from the Golgi complex to dendrites and axons in live neurons. The RUSH system involves the retention of a fluorescently tagged cargo protein fused to the streptavidin-binding peptide (SBP) in the endoplasmic reticulum (ER) through the expression of an ER-hook protein fused to streptavidin. Upon D-biotin addition, the cargo protein is released and its traffic to dendrites and axons can be analyzed in live neurons.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Complexo de Golgi/metabolismo , Imagem Molecular/métodos , Proteínas do Tecido Nervoso/metabolismo , Animais , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA