Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.626
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
2.
Cell ; 183(6): 1562-1571.e12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33306955

RESUMO

Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.


Assuntos
Bactérias/metabolismo , Fatores Imunológicos/metabolismo , Ixodes/fisiologia , Pele/microbiologia , Simbiose , Animais , Antibacterianos/farmacologia , Biocatálise , Parede Celular/metabolismo , Comportamento Alimentar , Feminino , Trato Gastrointestinal/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Modelos Moleculares , Peptidoglicano/metabolismo , Filogenia , Saliva/metabolismo , Glândulas Salivares/metabolismo , Staphylococcus epidermidis/fisiologia , Homologia Estrutural de Proteína , Especificidade por Substrato , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687787

RESUMO

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Assuntos
Cervos , Flavivirus , Metagenômica , Carrapatos , Animais , Metagenômica/métodos , Japão/epidemiologia , Cervos/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Carrapatos/virologia , Filogenia , Viroma/genética , Vírion/genética , Sus scrofa/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Soroepidemiológicos , Genoma Viral
4.
Proc Natl Acad Sci U S A ; 120(16): e2218012120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040418

RESUMO

Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.


Assuntos
Cervos , Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Animais , New England
5.
J Biol Chem ; 300(3): 105748, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354785

RESUMO

Ticks pose a substantial public health risk as they transmit various pathogens. This concern is related to the adept blood-sucking strategy of ticks, underscored by the action of the anticoagulant, madanin, which is known to exhibit an approximately 1000-fold increase in anticoagulant activity following sulfation of its two tyrosine residues, Tyr51 and Tyr54. Despite this knowledge, the molecular mechanism underlying sulfation by tick tyrosylprotein sulfotransferase (TPST) remains unclear. In this study, we successfully prepared tick TPST as a soluble recombinant enzyme. We clarified the method by which this enzyme proficiently sulfates tyrosine residues in madanin. Biochemical analysis using a substrate peptide based on madanin and tick TPST, along with the analysis of the crystal structure of the complex and docking simulations, revealed a sequential sulfation process. Initial sulfation at the Tyr51 site augments binding, thereby facilitating efficient sulfation at Tyr54. Beyond direct biochemical implications, these findings considerably improve our understanding of tick blood-sucking strategies. Furthermore, combined with the utility of modified tick TPST, our findings may lead to the development of novel anticoagulants, promising avenues for thrombotic disease intervention and advancements in the field of public health.


Assuntos
Anticoagulantes , Proteínas de Artrópodes , Sulfotransferases , Carrapatos , Animais , Anticoagulantes/química , Sulfotransferases/química , Tirosina/metabolismo , Proteínas de Artrópodes/química , Cristalização
6.
J Virol ; 98(3): e0170923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305156

RESUMO

Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Transmissão Vertical de Doenças Infecciosas , Glândulas Mamárias Animais , Leite , Animais , Feminino , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/transmissão , Encefalite Transmitida por Carrapatos/virologia , Glândulas Mamárias Animais/virologia , Leite/virologia , Animais Recém-Nascidos/virologia
7.
J Virol ; 98(7): e0010023, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38808973

RESUMO

Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.


Assuntos
Infecções por Flavivirus , Flavivirus , RNA Viral , Vacinas Atenuadas , Vacinas Virais , Vacinas Atenuadas/imunologia , Flavivirus/imunologia , Flavivirus/genética , RNA Viral/genética , Humanos , Vacinas Virais/imunologia , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/virologia , Animais , Desenvolvimento de Vacinas
8.
EMBO Rep ; 24(12): e57424, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37860832

RESUMO

The mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain. Additional co-IP assays performed with several TYK2 orthologs reveal that the interaction is conserved across mammalian species. In vitro kinase assays show that TBEV and LIV NS5 reduce the catalytic activity of TYK2. Our results thus illustrate a novel mechanism by which viruses suppress the interferon response.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , TYK2 Quinase , Carrapatos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Interferons/metabolismo , Carrapatos/metabolismo , TYK2 Quinase/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Humanos
9.
Mol Ther ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956870

RESUMO

Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.

10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217625

RESUMO

As natural chemokine inhibitors, evasin proteins produced in tick saliva are potential therapeutic agents for numerous inflammatory diseases. Engineering evasins to block the desired chemokines and avoid off-target side effects requires structural understanding of their target selectivity. Structures of the class A evasin EVA-P974 bound to human CC chemokine ligands 7 and 17 (CCL7 and CCL17) and to a CCL8-CCL7 chimera reveal that the specificity of class A evasins for chemokines of the CC subfamily is defined by conserved, rigid backbone-backbone interactions, whereas the preference for a subset of CC chemokines is controlled by side-chain interactions at four hotspots in flexible structural elements. Hotspot mutations alter target preference, enabling inhibition of selected chemokines. The structure of an engineered EVA-P974 bound to CCL2 reveals an underlying molecular mechanism of EVA-P974 target preference. These results provide a structure-based framework for engineering evasins as targeted antiinflammatory therapeutics.


Assuntos
Proteínas de Artrópodes/química , Quimiocinas/metabolismo , Inflamação/metabolismo , Engenharia de Proteínas , Carrapatos/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Quimiocinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(47): e2208274119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36383602

RESUMO

Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Camundongos , Animais , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiologia , Receptor beta de Linfotoxina
12.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312359

RESUMO

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , Complemento C1q , Evasão da Resposta Imune , Lipoproteínas , Doença de Lyme , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Complemento C1q/imunologia , Humanos , Imunoglobulinas/imunologia , Lipoproteínas/imunologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Proteoma/imunologia
13.
J Infect Dis ; 230(Supplement_1): S82-S86, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140718

RESUMO

Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.


Assuntos
Borrelia burgdorferi , Ixodes , Vacinas contra Doença de Lyme , Doença de Lyme , Doença de Lyme/prevenção & controle , Doença de Lyme/imunologia , Humanos , Animais , Borrelia burgdorferi/imunologia , Vacinas contra Doença de Lyme/imunologia , Ixodes/microbiologia , Vacinação , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Antígenos de Superfície/imunologia , Lipoproteínas/imunologia
14.
J Infect Dis ; 230(Supplement_1): S70-S75, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140722

RESUMO

Powassan virus is a tick-borne flavivirus that can cause severe neuroinvasive disease, with areas of endemicity in the Northeast and Midwest United States, Canada, and Russia. Diagnosis is challenging and relies on a high index of suspicion and choosing the right test based on duration of infection and the patient's immune status. This review covers laboratory testing for Powassan virus, including historical considerations, modern options, and methods being developed in the research space.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , História do Século XXI , História do Século XX , Animais , Canadá/epidemiologia , Anticorpos Antivirais/sangue
15.
J Infect Dis ; 230(Supplement_1): S11-S17, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140721

RESUMO

In the 40 years since Steere and colleagues first described Lyme disease, the illness has increased in incidence and distribution to become the most common vector-borne disease in the United States. Public health officials have developed, implemented, and revised surveillance systems to describe and monitor the condition. Much has been learned about the epidemiology of the illness, despite practical and logistical constraints that have encumbered the collection and interpretation of surveillance data. Future development of automated data collection from electronic health records as a source of surveillance and clinical information will address practical challenges and help answer ongoing questions about complications and persistent symptoms. Robust surveillance will be essential to monitor the effectiveness and safety of future vaccines and other preventive measures.


Assuntos
Doença de Lyme , Doença de Lyme/epidemiologia , Humanos , Estados Unidos/epidemiologia , História do Século XX , História do Século XXI , Vigilância da População , Incidência
16.
J Bacteriol ; 206(2): e0034023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38214528

RESUMO

Glycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.


Assuntos
Borrelia burgdorferi , Borrelia , Doença de Lyme , Carrapatos , Animais , Borrelia/genética , Borrelia/metabolismo , Glicerol/metabolismo , Adaptação ao Hospedeiro , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Óperon , Regulação Bacteriana da Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo
17.
Infect Immun ; 92(6): e0054023, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38727242

RESUMO

Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.


Assuntos
Adesinas Bacterianas , Anaplasma marginale , Dermacentor , Animais , Anaplasma marginale/genética , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Dermacentor/microbiologia , Bovinos , Aderência Bacteriana/fisiologia , Anaplasmose/microbiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Visualização da Superfície Celular , Interações Hospedeiro-Patógeno , Doenças dos Bovinos/microbiologia
18.
Infect Immun ; 92(8): e0024924, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38990046

RESUMO

Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.


Assuntos
Coinfecção , Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Doença de Lyme , Camundongos Endogâmicos C3H , Animais , Coinfecção/microbiologia , Coinfecção/virologia , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Doença de Lyme/microbiologia , Encefalite Transmitida por Carrapatos/virologia , Grupo Borrelia Burgdorferi , Feminino
19.
Infect Immun ; : e0021424, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120148

RESUMO

Lyme disease, the leading vector-borne disease in the United States and Europe, develops after infection with Borrelia burgdorferi sensu lato bacteria. Transmission of the spirochete from the tick vector to a vertebrate host requires global changes in gene expression that are controlled, in part, by the Rrp2/RpoN/RpoS alternative sigma factor cascade. Transcriptional studies defining the B. burgdorferi RpoS regulon have suggested that RpoS activates the transcription of paralogous family 52 (PFam52) genes. In strain B31, PFam52 genes (bbi42, bbk53, and bbq03) encode a set of conserved hypothetical proteins with >89% amino acid identity that are predicted to be surface-localized. Extensive homology among members of paralogous families complicates studies of protein contributions to pathogenicity as the potential for functional redundancy will obfuscate findings. Using a sequential mutagenesis approach, we generated clones expressing a single PFam52 paralog, as well as a strain deficient in all three. The single paralog expressing strains were used to confirm BBI42, BBK53, and BBQ03 surface localization and RpoS regulation. Surprisingly, the PFam52-deficient strain was able to infect mice and complete the enzootic cycle similar to the wild-type parental strain. Indeed, the presence of numerous pseudogenes that contain frameshifts or internal stop codons among the PFam52 genes suggests that they may be subjected to gene loss in B. burgdorferi's reduced genome. Alternatively, the lack of phenotype might reflect the limitations of the experimental mouse infection model.

20.
Clin Infect Dis ; 78(1): 80-89, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-37540989

RESUMO

BACKGROUND: Powassan virus (POWV) is an emerging arthropod-borne flavivirus, transmitted by Ixodes spp. ticks, which has been associated with neuroinvasive disease and poor outcomes. METHODS: A retrospective study was conducted at Mayo Clinic from 2013 to 2022. We included clinical and epidemiologic data of probable and confirmed neuroinvasive POWV cases. RESULTS: Sixteen patients with neuroinvasive POWV were identified; their median age was 63.2 years, and 62.5% were male. Six patients presented with rhombencephalitis, 4 with isolated meningitis, 3 with meningoencephalitis, 2 with meningoencephalomyelitis, and 1 with opsoclonus myoclonus syndrome. A median time of 18 days was observed between symptom onset and diagnosis. Cerebrospinal fluid analysis showed lymphocytic pleocytosis with elevated protein and normal glucose in the majority of patients. Death occurred within 90 days in 3 patients (18.8%), and residual neurologic deficits were seen in 8 survivors (72.7%). CONCLUSIONS: To our knowledge, this is the largest case series of patients with neuroinvasive POWV infection. We highlight the importance of a high clinical suspicion among patients who live in or travel to high-risk areas during the spring to fall months. Our data show high morbidity and mortality rates among patients with neuroinvasive disease.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Meningoencefalite , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA