Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Biol Chem ; : 107663, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128725

RESUMO

Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surround the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.

2.
J Biol Chem ; 300(2): 105604, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159861

RESUMO

ADP-ribosylation is a post-translational modification involved in regulation of diverse cellular pathways. Interestingly, many pathogens have been identified to utilize ADP-ribosylation as a way for host manipulation. A recent study found that CteC, an effector from the bacterial pathogen Chromobacterium violaceum, hinders host ubiquitin (Ub) signaling pathways via installing mono-ADP-ribosylation on threonine 66 of Ub. However, the molecular basis of substrate recognition by CteC is not well understood. In this article, we probed the substrate specificity of this effector at protein and residue levels. We also determined the crystal structure of CteC in complex with NAD+, which revealed a canonical mono-ADP-ribosyltransferase fold with an additional insertion domain. The AlphaFold-predicted model differed significantly from the experimentally determined structure, even in regions not used in crystal packing. Biochemical and biophysical studies indicated unique features of the NAD+ binding pocket, while showing selectivity distinction between Ub and structurally close Ub-like modifiers and the role of the insertion domain in substrate recognition. Together, this study provides insights into the enzymatic specificities and the key structural features of a novel bacterial ADP-ribosyltransferase involved in host-pathogen interaction.


Assuntos
ADP Ribose Transferases , Proteínas de Bactérias , Modelos Moleculares , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , ADP-Ribosilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chromobacterium/química , Chromobacterium/enzimologia , Chromobacterium/genética , Cristalografia por Raios X , NAD/química , NAD/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Especificidade por Substrato , Ubiquitina/metabolismo
3.
J Biol Chem ; 300(7): 107358, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782206

RESUMO

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.


Assuntos
Ácidos Aristolóquicos , Albumina Sérica Humana , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Humanos , Cristalografia por Raios X , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Adutos de DNA/metabolismo , Adutos de DNA/química , Ligação Proteica , Ácido Mirístico/metabolismo , Ácido Mirístico/química
4.
J Biol Chem ; : 107579, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025455

RESUMO

NEIL1 is a DNA glycosylase that recognizes and initiates base excision repair of oxidized bases. The ubiquitous ssDNA binding scaffolding protein, replication protein A (RPA), modulates NEIL1 activity in a manner that depends on DNA structure. Interaction between NEIL1 and RPA has been reported, but the molecular basis of this interaction has yet to be investigated. Using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we show that NEIL1 interacts with RPA through two contact points. An interaction with the RPA32C protein recruitment domain was mapped to a motif in the common interaction domain (CID) of NEIL1 and a dissociation constant (Kd) of 200 nM was measured. A substantially weaker secondary interaction with the tandem RPA70AB ssDNA binding domains was also mapped to the CID. Together these two contact points reveal NEIL1 has a high overall affinity (Kd ∼ 20 nM) for RPA. A homology model of the complex of RPA32C with the NEIL1 RPA binding motif in the CID was generated and used to design a set of mutations in NEIL1 to disrupt the interaction, which was confirmed by ITC. The mutant NEIL1 remains catalytically active against a thymine glycol lesion in duplex DNA in vitro. Testing the functional effect of disrupting the NEIL1-RPA interaction in vivo using a Fluorescence Multiplex-Host Cell Reactivation (FM-HCR) reporter assay revealed an unexpected role for NEIL1 in nucleotide excision repair. These findings are discussed in the context of the role of NEIL1 in replication-associated repair.

5.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141762

RESUMO

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Assuntos
Proteínas Ativadoras de GTPase , Mitocôndrias , Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Humanos , Sítios de Ligação , Calorimetria , Cromatografia em Gel , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/metabolismo , Técnicas do Sistema de Duplo-Híbrido
6.
J Lipid Res ; 65(6): 100560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750995

RESUMO

Zinc is required for virtually all biological processes. In plasma, Zn2+ is predominantly transported by human serum albumin (HSA), which possesses two Zn2+-binding sites of differing affinities (sites A and B). Fatty acids (FAs) are also transported by HSA, with seven structurally characterized FA-binding sites (named FA1-FA7) known. FA binding inhibits Zn2+-HSA interactions, in a manner that can impact upon hemostasis and cellular zinc uptake, but the degree to which binding at specific FA sites contributes to this inhibition is unclear. Wild-type HSA and H9A, H67A, H247A, and Y150F/R257A/S287A (FA2-KO) mutant albumins were expressed in Pichia pastoris. Isothermal titration calorimetry studies revealed that the Zn2+-binding capacity at the high-affinity Zn2+ site (site A) was reduced in H67A and H247A mutants, with site B less affected. The H9A mutation decreased Zn2+ binding at the lower-affinity site, establishing His9 as a site B ligand. Zn2+ binding to HSA and H9A was compromised by palmitate, consistent with FA binding affecting site A. 13C-NMR experiments confirmed that the FA2-KO mutations prohibited FA binding at site FA2. Zn2+ binding to the FA2-KO mutant was unaffected by myristate, suggesting binding at FA2 is solely responsible for inhibition. Molecular dynamics studies identified the steric obstruction exerted by bound FA in site FA2, which impedes the conformational change from open (FA-loaded) to closed (FA-free) states, required for Zn2+ to bind at site A. The successful targeting of the FA2 site will aid functional studies exploring the interplay between circulating FA levels and plasma Zn2+ speciation in health and disease.


Assuntos
Ácidos Graxos , Albumina Sérica Humana , Zinco , Zinco/metabolismo , Humanos , Sítios de Ligação , Ácidos Graxos/metabolismo , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Ligação Proteica
7.
Biochem Biophys Res Commun ; 695: 149467, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211531

RESUMO

Staphylococcus aureus (S. aureus), a Gram-positive bacterium, causes a wide range of infections, and diagnosis at an early stage is challenging. Targeting the maltodextrin transporter has emerged as a promising strategy for imaging bacteria and has been able to image a wide range of bacteria including S. aureus. However, little is known about the maltodextrin transporter in S. aureus, and this prevents new S. aureus specific ligands for the maltodextrin transporter from being developed. In Gram-positive bacteria, including S. aureus, the first step of maltodextrin transport is the binding of the maltodextrin-binding protein malE to maltodextrins. Thus, understanding the binding affinity and characteristics of malE from S. aureus is important to developing efficient maltodextrin-based imaging probes. We evaluated the affinity of malE of S. aureus to maltodextrins of various lengths. MalE of S. aureus (SAmalE) was expressed in E. coli BL21(DE3) and purified by Ni-NTA resin. The affinities of SAmalE to maltodextrins were evaluated with isothermal titration calorimetry. SAmalE has low affinity to maltose but binds to maltotriose and longer maltodextrins up to maltoheptaose with affinities up to Ka = 9.02 ± 0.49 × 105 M-1. SAmalE binding to maltotriose-maltoheptaose was exothermic and fit a single-binding site model. The van't Hoff enthalpy in the binding reaction of SAmalE with maltotriose was 9.9 ± 1.3 kcal/mol, and the highest affinity of SAmalE was observed with maltotetraose with Ka = 9.02 ± 0.49 × 105 M-1. In the plot of ΔH-T*ΔS, the of Enthalpy-Entropy Compensation effect was observed in binding reaction of SAmalE to maltodextrins. Acarbose and maltotetraiol bind with SAmalE indicating that SAmalE is tolerant of modifications on both the reducing and non-reducing ends of maltodextrins. Our results show that unlike ECmalE and similar to the maltodextrin binding protein of Streptococci, SAmalE primarily binds to maltodextrins via hydrogen bonds. This is distinct from the maltodextrin binding protein of Streptococci, SAmalE that binds to maltotetraiol with high affinity. Understanding the binding characteristics and tolerance to maltodextrins modifications by maltodextrin binding proteins will hopefully provide the basis for developing bacterial species-specific maltodextrin-based imaging probes.


Assuntos
Proteínas de Transporte , Staphylococcus aureus , Proteínas de Transporte/metabolismo , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Polissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Calorimetria , Ligação Proteica
8.
J Mol Recognit ; 37(2): e3075, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191989

RESUMO

The binding of four alkaloids with human serum albumin (HSA) was investigated by isothermal titration calorimetry (ITC), spectroscopy and molecular docking techniques. The findings demonstrated that theophylline or caffeine can bind to HAS, respectively. The number of binding sites and binding constants are obtained. The binding mode is a static quenching process. The effects of steric hindrance, temperature, salt concentration and buffer solution on the binding indicated that theophylline and HSA have higher binding affinity than caffeine. The fluorescence and ITC results showed that the interaction between HSA and theophylline or caffeine is an entropy-driven spontaneous exothermic process. The hydrophobic force was the primary driving factor. The experimental results were consistent with the molecular docking data. Based on the molecular structures of the four alkaloids, steric hindrance might be a major factor in the binding between HSA and these four alkaloids. This study elucidates the mechanism of interactions between four alkaloids and HSA.


Assuntos
Alcaloides , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Cafeína , Teofilina , Espectrometria de Fluorescência , Termodinâmica , Sítios de Ligação , Calorimetria/métodos , Ligação Proteica , Dicroísmo Circular
9.
J Mol Recognit ; 37(2): e3072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126580

RESUMO

G-quadruplexes are important drug targets and get attention due to their existence in telomere, ribosomal DNA, promoter regions of some oncogenes, and the untranslated regions of mRNA. Due to the biological roles of G-quadruplexes, investigating of the G-quadruplex-small molecule interaction is essential. The primary motivation for these studies is the possibility of inhibiting cell functions associated with G-quadruplex sequences by binding with small molecules. Targeting the small molecules to desired tissue with the G-quadruplex vehicles is the second important goal of the G-quadruplex-small molecule interaction studies. In the present study, the new peripherally 2-mercaptopyridine octasubstituted copper(II) phthalocyanine and its quaternized derivative (CuPc) were synthesized and characterized by elemental analysis FT-IR, UV-Vis, and mass spectra. The excellent solubility of CuPc in water is essential for its transport in the organism. Because of this feature, its affinity toward G-quadruplex forming aptamers, AS1411, Tel21, and Tel45, was investigated. The UV-Vis spectrophotometric titration data confirmed the prevention of aggregation upon interaction with G-quadruplex, which is very important for biomedical applications. The CD spectroscopic analyses and binding stoichiometry confirmed the "end stacking" model for interaction of AS1411 with CuPc. The interaction of CuPc caused the equilibrium shift from hybrid conformation to antiparallel conformation for Tel21 and Tel45. The isothermal titration calorimeter (ITC) was used for the determination of thermodynamic parameters. The thermodynamic data of the interaction was fitted well with the one-site model. The negative values of Gibbs free energy change confirmed the spontaneous nature of the reactions. Besides, the negative values of enthalpy change and entropy change proved that the nature of processes was "enthalpy driven." The interaction stoichiometry was 2 for AS1411 and Tel21 and 1.5 for Tel45. The binding constants were 1.3(±0.3) × 105 , 3.2(±0.4) × 105 , and 1.1(±0.3) × 105 M-1 , which were at the level of ethidium bromide intercalation binding constant given in the literature. The DNA polymerase stop assay further supported the interaction of CuPc with G-quadruplex DNA. The experimental results confirm that the CuPc has a potential photosensitizer behaviour for photodynamic therapy.


Assuntos
Quadruplex G , Piridinas , Cobre , Sulfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Dicroísmo Circular , Termodinâmica , Telômero
10.
Heart Fail Rev ; 29(5): 1065-1077, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39037564

RESUMO

Heart failure (HF) is a systemic disease associated with a high risk of morbidity, mortality, increased risk of hospitalizations, and low quality of life. Therefore, effective, systemic treatment strategies are necessary to mitigate these risks. In this manuscript, we emphasize the concept of high-intensity care to optimize guideline-directed medical therapy (GDMT) in HF patients. The document highlights the importance of achieving optimal recommended doses of GDMT medications, including beta-blockers, renin-angiotensin-aldosterone inhibitors, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter inhibitors to improve patient outcomes, achieve effective, sustainable decongestion, and improve patient quality of life. The document also discusses potential obstacles to GDMT optimization, such as clinical inertia, physiological limitations, comorbidities, non-adherence, and frailty. Lastly, it also attempts to provide possible future scenarios of high-intensive care that could improve patient outcomes.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/terapia , Qualidade de Vida , Guias de Prática Clínica como Assunto , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico
11.
Electrophoresis ; 45(7-8): 639-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227365

RESUMO

In this work, we proposed a double moving redox boundary (MROB) model to realize the colorless analyte electrophoresis titration (ET) by the two steps of the redox reaction. Single MROB has been proposed for the development of ET sensing (Analyst, 2013, 138, 1137. ACS Sensor, 2019, 4, 126.), and faces great challenges in detecting the analyte without color change during redox reaction. Herein, a novel model of double-MROB electrophoresis, including its mechanisms, equations, and procedures, was developed for titration by using ascorbic acid as a model analyte. The first MROB was created with ferric iron (Fe3+) and iodide ion (I-) in which Fe3+ was reduced as Fe2+ and I- was oxidized as molecular iodine (I2) used as an indicator of visible MROB due to blue starch-iodine complex. The second boundary was then formed between the molecular iodine and model analyte of ascorbic acid. Under given conditions, there was a quantitative relationship between velocity of MROB (VMROB(ii)) and ascorbic acid concentration (CVit C) in the double-MROB system (1/VMROB(ii) = 0.6502CVit C + 4.5165, and R = 0.9939). The relevant relative standard deviation values of intraday and inter-day were less than ∼5.55% and ∼6.64%, respectively. Finally, the titration of ascorbic acid in chewable vitamin C tablets was performed by the developed method, the titration results agreed with those via the classic iodometric titration. All the results briefly demonstrated the validity of the double MROB model, in which Vit C was used as a model analyte. The developed method had potential use in quantitative analysis of redox-active species in biomedical samples.


Assuntos
Ácido Ascórbico , Oxirredução , Ácido Ascórbico/análise , Ácido Ascórbico/química , Limite de Detecção , Reprodutibilidade dos Testes , Modelos Químicos , Iodo/química , Iodo/análise , Modelos Lineares , Eletroforese/métodos
12.
Chemistry ; 30(36): e202401231, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38625061

RESUMO

Lewis acidic boron compounds are ubiquitous in chemistry due to their numerous applications, yet tuning and optimizing their properties towards different purposes is still a challenging field of research. In this work, the boron-based Lewis acid B[OTeF3(C6F5)2]3 was synthesized by reaction of the teflate derivative HOTeF3(C6F5)2 with BCl3 or BCl3 ⋅ SMe2. This new compound presents a remarkably high thermal stability up to 300 °C, as well as one of the most sterically encumbered boron centres known in the literature. Theoretical and experimental methods revealed that B[OTeF3(C6F5)2]3 exhibits a comparable Lewis acidity to that of the well-known B(C6F5)3. The affinity of B[OTeF3(C6F5)2]3 towards pyridine was accessed by Isothermal Titration Calorimetry (ITC) and compared to that of B(OTeF5)3 and B(C6F5)3. The ligand-transfer reactivity of this new boron compound towards different fluorides was demonstrated by the formation of an anionic Au(III) complex and a hypervalent iodine(III) species.

13.
Arch Biochem Biophys ; 756: 109995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621448

RESUMO

T4 polynucleotide kinase (T4 PNK) phosphorylates the 5'-terminus of DNA and RNA substrates. It is widely used in molecular biology. Single nucleotides can serve as substrates if a 3'-phosphate group is present. In this study, the T4 PNK-catalyzed conversion of adenosine 3'-monophosphate (3'-AMP) to adenosine-3',5'-bisphosphate was characterized using isothermal titration calorimetry (ITC). Although ITC is typically used to study ligand binding, in this case the instrument was used to evaluate enzyme kinetics by monitoring the heat production due to reaction enthalpy. The reaction was initiated with a single injection of 3'-AMP substrate into the sample cell containing T4 PNK and ATP at pH 7.6 and 30 °C, and Michaelis-Menten analysis was performed on the reaction rates derived from the plot of differential power versus time. The Michaelis-Menten constant, KM, was 13 µM, and the turnover number, kcat, was 8 s-1. The effect of inhibitors was investigated using pyrophosphate (PPi). PPi caused a dose-dependent decrease in the apparent kcat and increase in the apparent KM under the conditions tested. Additionally, the intrinsic reaction enthalpy and the activation energy of the T4 PNK-catalyzed phosphorylation of 3'-AMP were determined to be -25 kJ/mol and 43 kJ/mol, respectively. ITC is seldom used as a tool to study enzyme kinetics, particularly for technically-challenging enzymes such as kinases. This study demonstrates that quantitative analysis of kinase activity can be amenable to the ITC single injection approach.


Assuntos
Calorimetria , Polinucleotídeo 5'-Hidroxiquinase , Cinética , Calorimetria/métodos , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Termodinâmica , Bacteriófago T4/enzimologia , Difosfatos/química , Difosfatos/metabolismo , Fosforilação
14.
Anal Biochem ; 694: 115602, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38977233

RESUMO

Modern isothermal titration calorimetry instruments give great precision, but for comparable accuracy they require chemical calibration. For the heat factor, one recommended process is HCl into the weak base TRIS. In studying this reaction with a VP-ITC and two Nano-ITCs, we have encountered some problems, most importantly a titrant volume shortfall Δv ≈ 0.3 µL, which we attribute to diffusive loss of HCl in the syringe tip. This interpretation is supported by a mathematical treatment of the diffusion problem. The effect was discovered through a variable-v protocol, which thus should be used to properly allow for it in any reaction that similarly approaches completion. We also find that the effects from carbonate contamination and from OH- from weak base hydrolysis can be more significant that previously thought. To facilitate proper weighting in the least-squares fitting of data, we have estimated data variance functions from replicate data. All three instruments have low-signal precision of σ ≈ 1 µJ; titrant volume uncertainty is a factor of ∼2 larger for the Nano-ITCs than for the VP-ITC. The final heat factors remain uncertain by more than the ∼1 % precision of the instruments and are unduly sensitive to the HCl concentration.


Assuntos
Calorimetria , Calorimetria/métodos , Calibragem , Ácido Clorídrico/química
15.
Diabet Med ; 41(8): e15348, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38758653

RESUMO

AIMS: To investigate the impact of real-time continuous glucose monitoring (rtCGM) on glycaemia in a predominantly indigenous (Maori) population of adults with insulin-requiring type 2 diabetes (T2D) in New Zealand. METHODS: Twelve-week, multicentre randomised controlled trial (RCT) of adults with T2D using ≥0.2 units/kg/day of insulin and elevated glycated haemoglobin (HbA1c) ≥64 mmol/mol (8.0%). Following a 2-week blinded CGM run-in phase, participants were randomised to rtCGM or control (self-monitoring blood glucose [SMBG]). The primary outcome was time in the target glucose range (3.9-10 mmol/L; TIR) during weeks 10-12, with data collected by blinded rtCGM in the control group. RESULTS: Sixty-seven participants entered the RCT phase (54% Maori, 57% female), median age 53 (range 16-70 years), HbA1c 85 (IQR 74, 94) mmol/mol (9.9 [IQR 8.9, 10.8]%), body mass index (36.7 ± 7.7 kg/m2). Mean (±SD) TIR increased from 37 (24)% to 53 (24)% [Δ 13%; 95% CI 4.2 to 22; P = 0.007] in the rtCGM group but did not change in the SMBG group [45 (21)% to 45 (25)%, Δ 2.5%, 95% CI -6.1 to 11, P = 0.84]. Baseline-adjusted between-group difference in TIR was 10.4% [95% CI -0.9 to 21.7; P = 0.070]. Mean HbA1c (±SD) decreased in both groups from 85 (18) mmol/mol (10.0 [1.7]%) to 64 (16) mmol/mol (8.0 [1.4]%) in the rtCGM arm and from 81 (12) mmol/mol (9.6 [1.1]%) to 65 (13) mmol/mol (8.1 [1.2]%) in the SMBG arm (P < 0.001 for both). There were no severe hypoglycaemic or ketoacidosis events in either group. CONCLUSIONS: Real-time CGM use in a supportive treat-to-target model of care likely improves glycaemia in a population with insulin-treated T2D and elevated HbA1c.


Assuntos
Monitoramento Contínuo da Glicose , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Insulina , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Glicemia/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Hemoglobinas Glicadas/análise , Controle Glicêmico/métodos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Nova Zelândia/epidemiologia , Povo Maori
16.
Virol J ; 21(1): 112, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750558

RESUMO

In 2018, SGS Belgium NV developed RSV-NICA (Respiratory Syncytial Virus-Nasobronchial Infective Challenge Agent), an RSV type A challenge agent for use in RSV Controlled Human Infection Model (CHIM) studies.It is widely recognized that the stability of RSV can be influenced by a variety of environmental parameters, such as temperature and pH. Consequently, our objective was to evaluate the stability of the viral titer of RSV-NICA following five years of controlled storage and to determine the uniformity of the viral titers across different vials of a GMP-qualified batch of RSV-NICA. In addition, we examined the capacity of RSV-NICA to infect human primary airway epithelial cells (MucilAir™), the principal target cells of RSV, and evaluated the influence of single and recurrent freeze-thaw cycles on the infectious viral titer of the challenge agent.The aliquoted RSV-NICA virus stock was subjected to standard virological and molecular methods to gather data on the titer and consistency of the viral titer contained within 24 representative vials of the stock. Our findings illustrate that over a span of five years of cryo-storage, the infectious viral titer in 75% of the tested vials exhibited a comparable average infectious viral titer (4.75 ± 0.06 vs 4.99 ± 0.11; p-value = 0.14). A considerable reduction down to an undetectable level of infectious virus was observed in the remaining vials. RSV-NICA demonstrated its capacity to effectively infect differentiated human airway epithelial cells, with active virus replication detected in these cells through increasing RSV genome copy number over time. Virus tropism for ciliated cells was suggested by the inhibition of cilia beating coupled with an increase in viral RNA titers. No discernable impact on membrane barrier function of the epithelial lung tissues nor cytotoxicity was detected. Pooling of vials with infectious titers > 4.0 log10 TCID50/ml and freeze-thawing of these combined vials showed no deterioration of the infectious titer. Furthermore, pooling and re-aliquoting of vials spanning the entire range of viral titers (including vials with undetectable infectious virus) along with subjecting the vials to three repeated freeze-thaw cycles did not result in a decrease of the infectious titers in the tested vials.Taken together, our findings indicate that long-term cryo-storage of vials containing RSV-NICA challenge agent may influence the infectious viral titer of the virus, leading to a decrease in the homogeneity of this titer throughout the challenge stock. However, our study also demonstrates that when heterogeneity of the infectious titer of an RSV stock is observed, rounds of pooling, re-aliquoting and subsequent re-titration serve as an effective method not only to restore the homogeneity of the infectious titer of an RSV-A stock, but also to optimize patient-safety, scientific and operational aspects of viral inoculation of study participants during at least the period of one RSV CHIM trial. RSV-NICA is a stable, suitable CHIM challenge agent that can be utilized in efficacy trials for RSV vaccines and antiviral entities.


Assuntos
Células Epiteliais , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Carga Viral , Humanos , Vírus Sincicial Respiratório Humano/fisiologia , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/virologia , Células Epiteliais/virologia , Replicação Viral , Criopreservação/métodos , Células Cultivadas
17.
Biotechnol Bioeng ; 121(7): 2193-2204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38639160

RESUMO

This study presents a novel approach for developing generic metabolic Raman calibration models for in-line cell culture analysis using glucose and lactate stock solution titration in an aqueous phase and data augmentation techniques. First, a successful set-up of the titration method was achieved by adding glucose or lactate solution at several different constant rates into the aqueous phase of a bench-top bioreactor. Subsequently, the in-line glucose and lactate concentration were calculated and interpolated based on the rate of glucose and lactate addition, enabling data augmentation and enhancing the robustness of the metabolic calibration model. Nine different combinations of spectra pretreatment, wavenumber range selection, and number of latent variables were evaluated and optimized using aqueous titration data as training set and a historical cell culture data set as validation and prediction set. Finally, Raman spectroscopy data collected from 11 historical cell culture batches (spanning four culture modes and scales ranging from 3 to 200 L) were utilized to predict the corresponding glucose and lactate values. The results demonstrated a high prediction accuracy, with an average root mean square errors of prediction of 0.65 g/L for glucose, and 0.48 g/L for lactate. This innovative method establishes a generic metabolic calibration model, and its applicability can be extended to other metabolites, reducing the cost of deploying real-time cell culture monitoring using Raman spectroscopy in bioprocesses.


Assuntos
Técnicas de Cultura de Células , Glucose , Ácido Láctico , Análise Espectral Raman , Análise Espectral Raman/métodos , Glucose/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/análise , Calibragem , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Modelos Biológicos , Células CHO , Cricetulus , Meios de Cultura/química , Animais
18.
Mol Pharm ; 21(7): 3375-3382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885189

RESUMO

Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.


Assuntos
Polímeros , Polímeros/química , Metilcelulose/química , Metilcelulose/análogos & derivados , Cristalização/métodos , Celulose/química , Celulose/análogos & derivados , Resinas Acrílicas/química , Sais/química , Derivados da Hipromelose/química , Solubilidade
19.
Mol Pharm ; 21(8): 4038-4046, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38949624

RESUMO

The plasma protein α1-acid glycoprotein (AGP) primarily affects the pharmacokinetics of basic drugs. There are two AGP variants in humans, A and F1*S, exhibiting distinct drug-binding selectivity. Elucidation of the drug-binding selectivity of human AGP variants is essential for drug development and personalized drug therapy. Herein, we aimed to establish the contribution of amino acids 112 and 114 of human AGP to drug-binding selectively. Both amino acids are located in the drug-binding region and differ between the variants. Phe112/Ser114 of the A variant and its equivalent residues in the F1*S variant (Leu112/Phe114) were swapped with each other. Binding experiments were then conducted using the antiarrhythmic drug disopyramide, which selectively binds to the A variant. A significant decrease in the bound fraction was observed in each singly mutated A protein (Phe112Leu or Ser114Phe). Moreover, the bound fraction of the double A mutant (Phe112Leu/Ser114Phe) was decreased to that of wild-type F1*S. Intriguingly, the double F1*S mutant (Leu112Phe/Phe114Ser), in which residues were swapped with those of the A variant, showed only partial restoration in binding. The triple F1*S mutant (Leu112Phe/Phe114Ser/Asp115Tyr), where position 115 is thought to contribute to the difference in pocket size between variants, showed a further recovery in binding to 70% of that of wild-type A. These results were supported by thermodynamic analysis and acridine orange binding, which selectively binds the A variant. Together, these data indicate that, in addition to direct interaction with Phe112 and Ser114, the binding pocket size contributed by Tyr115 is important for the drug-binding selectivity of the A variant.


Assuntos
Orosomucoide , Ligação Proteica , Orosomucoide/metabolismo , Orosomucoide/genética , Orosomucoide/química , Humanos , Sítios de Ligação , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina/genética , Mutação , Serina/metabolismo , Serina/genética , Serina/química , Antiarrítmicos/química , Antiarrítmicos/metabolismo
20.
Eur Biophys J ; 53(3): 159-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493432

RESUMO

Protein-protein interactions (PPI) have emerged as valuable targets in medicinal chemistry due to their key roles in important biological processes. The modulation of PPI by small peptides offers an excellent opportunity to develop drugs against human diseases. Here, we exploited the knowledge of the binding interface of the IgG-protein G complex (PDB:1FCC) for designing peptides that can inhibit these complexes. Herein, we have designed several closely related peptides, and the comparison of results from experiments and computational studies indicated that all the peptides bind close to the expected binding site on IgG and the complexes are stable. A minimal sequence consisting of 11 amino acids (P5) with binding constants in the range of 100 nM was identified. We propose that the main affinity differences across the series of peptides arose from the presence of polar amino acid residues. Further, the molecular dynamic studies helped to understand the dynamic properties of complexes in terms of flexibility of residues and structural stability at the interface. The ability of P5 to compete with the protein G in recognizing IgG can help in the detection and purification of antibodies. Further, it can serve as a versatile tool for a better understanding of protein-protein interactions.


Assuntos
Aminoácidos , Peptídeos , Humanos , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Aminoácidos/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA