Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e10704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455142

RESUMO

Top-down and bottom-up factors and their interaction highlight the interdependence of resources and consumer impacts on food webs and ecosystems. Variation in the strength of upwelling-mediated ecological controls (i.e., light availability and herbivory) between early and late succession stages is less well understood from the standpoint of influencing algal functional group composition. We experimentally tested the effect of light, grazing, and disturbance on rocky intertidal turf-forming algal communities. Studies were conducted on the South Island of New Zealand at Raramai on the east coast (a persistent downwelling region) and Twelve Mile Beach on the west coast (an intermittent upwelling region). Herbivory, light availability, and algal cover were manipulated and percent cover of major macroalgal functional groups and sessile invertebrates were measured monthly from October 2017 to March 2018. By distinguishing between algal functional groups and including different starting conditions in our design, we found that the mosaic-like pattern of bare rock intermingled with diverse turf-forming algae at Twelve Mile Beach was driven by a complex array of species interactions, including grazing, predation, preemptive competition and interference competition, colonization rates, and these interactions were modulated by light availability and other environmental conditions. Raramai results contrasted with those at Twelve Mile Beach in showing stronger effects of grazing and relatively weak effects of other interactions, low colonization rates of invertebrates, and light effects limited to crustose algae. Our study highlights the potential importance of an upwelling-mediated 3-way interaction among herbivory, light availability, and preemption in structuring contrasting low rocky intertidal macroalgal communities.

2.
Ecology ; 105(5): e4290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570923

RESUMO

Plants face trade-offs between allocating resources to growth, while also defending against herbivores or pathogens. Species differences along defense trade-off axes may promote coexistence and maintain diversity. However, few studies of plant communities have simultaneously compared defense trade-offs against an array of herbivores and pathogens for which defense investment may differ, and even fewer have been conducted in the complex natural communities in which these interactions unfold. We tested predictions about the role of defense trade-offs with competition and growth in diversity maintenance by tracking plant species abundance in a field experiment that removed individual consumer groups (mammals, arthropods, fungi) and added nutrients. Consistent with a growth-defense trade-off, plant species that increased in mass in response to nutrient addition also increased when consumers were removed. This growth-defense trade-off occurred for all consumer groups studied. Nutrient addition reduced plant species richness, which is consistent with trade-off theory. Removing foliar fungi increased plant diversity via increased species evenness, whereas removal of other consumer groups had little effect on diversity, counter to expectations. Thus, while growth-defense trade-offs are general across consumer groups, this trade-off observed in wild plant communities does not necessarily support plant diversity maintenance.


Assuntos
Fungos , Insetos , Mamíferos , Plantas , Fungos/fisiologia , Animais , Insetos/fisiologia , Plantas/microbiologia , Plantas/classificação , Desenvolvimento Vegetal/fisiologia , Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA