Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 474(23): 3887-3902, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29025974

RESUMO

A multitude of natural and artificial compounds have been recognized to modulate autophagy, providing direct or, through associated pathways, indirect entry points to activation and inhibition. While these pharmacological tools are extremely useful in the study of autophagy, their abundance also suggests the potential presence of unidentified autophagic modulators that may interfere with experimental designs if applied unknowingly. Here, we report unanticipated effects on autophagy and bioenergetics in neuronal progenitor cells (NPCs) incubated with the widely used lipid-based transfection reagent lipofectamine (LF), which induced mitochondria depolarization followed by disruption of electron transport. When NPCs were exposed to LF for 5 h followed by 24, 48, and 72 h in LF-free media, an immediate increase in mitochondrial ROS production and nitrotyrosine formation was observed. These events were accompanied by disrupted mitophagy (accumulation of dysfunctional and damaged mitochondria, and of LC3II and p62), in an mTOR- and AMPK-independent manner, and despite the increased mitochondrial PINK1 (PTEN-inducible kinase 1) localization. Evidence supported a role for a p53-mediated abrogation of parkin translocation and/or abrogation of membrane fusion between autophagosome and lysosomes. While most of the outcomes were LF-specific, only two were shared by OptiMEM exposure (with no serum and reduced glucose levels) albeit at lower extents. Taken together, our findings show that the use of transfection reagents requires critical evaluation with respect to consequences for overall cellular health, particularly in experiments designed to address autophagy-inducing effects and/or energy stress.


Assuntos
DNA/química , Metabolismo Energético , Lipídeos/química , Mitofagia , Células-Tronco Neurais/metabolismo , RNA Interferente Pequeno/química , Transfecção , Proteínas Quinases Ativadas por AMP/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Pharmaceutics ; 15(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36839742

RESUMO

BACKGROUND: One of the most significant limitations that therapeutic oligonucleotides present is the development of specific and efficient delivery vectors for the internalization of nucleic acids into cells. Therefore, there is a need for the development of new transfection agents that ensure a proper and efficient delivery into mammalian cells. METHODS: We describe the synthesis of 1,3,5-tris[(4-oelyl-1-pyridinio)methyl]benzene tribromide (TROPY) and proceeded to the validation of its binding capacity toward oligonucleotides, the internalization of DNA into the cells, the effect on cell viability, apoptosis, and its capability to transfect plasmid DNA. RESULTS: The synthesis and chemical characterization of TROPY, which can bind DNA and transfect oligonucleotides into mammalian cells through clathrin and caveolin-mediated endocytosis, are described. Using a PPRH against the antiapoptotic survivin gene as a model, we validated that the complex TROPY-PPRH decreased cell viability in human cancer cells, increased apoptosis, and reduced survivin mRNA and protein levels. TROPY was also able to stably transfect plasmid DNA, as demonstrated by the formation of viable colonies upon the transfection of a dhfr minigene into dhfr-negative cells and the subsequent metabolic selection. CONCLUSIONS: TROPY is an efficient transfecting agent that allows the delivery of therapeutic oligonucleotides, such as PPRHs and plasmid DNA, inside mammalian cells.

3.
Neuroscience ; 339: 267-275, 2016 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-27743984

RESUMO

Reactive astrocytosis and the subsequent glial scar is ubiquitous to injuries of the central nervous system, especially spinal cord injury (SCI) and primarily serves to protect against further damage, but is also a prominent inhibitor of regeneration. Manipulating the glial scar by targeting chondroitin sulfate proteoglycans (CSPGs) has been the focus of much study as a means to improve axon regeneration and subsequently functional recovery. In this study we investigate the ability of small interfering RNA (siRNA) delivered by a non-viral polymer vector to silence the rate-limiting enzyme involved in CSPG synthesis. Gene expression of this enzyme, xylosyltransferase-1, was silenced by 65% in Neu7 astrocytes which conferred a reduced expression of CSPGs. Furthermore, conditioned medium taken from treated Neu7s, or co-culture experiments with dorsal root ganglia (DRG) showed that siRNA treatment resulted in a more permissive environment for DRG neurite outgrowth than treatment with chondroitinase ABC alone. These results indicate that there is a role for targeted siRNA therapy using polymeric vectors to facilitate regeneration of injured axons following central nervous system injury.


Assuntos
Astrócitos/enzimologia , Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/genética , RNA Interferente Pequeno/administração & dosagem , Animais , Astrócitos/citologia , Linhagem Celular , Condroitina ABC Liase/administração & dosagem , Condroitina ABC Liase/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados , Etilaminas , Gânglios Espinais/citologia , Gânglios Espinais/enzimologia , Vértebras Lombares , Metacrilatos , Crescimento Neuronal/fisiologia , Ratos , Vértebras Torácicas , UDP Xilose-Proteína Xilosiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA