Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
New Phytol ; 243(3): 1205-1219, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38855965

RESUMO

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.


Assuntos
Biodiversidade , Micorrizas , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Especificidade da Espécie
2.
New Phytol ; 242(4): 1691-1703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659111

RESUMO

Understanding the complex interactions between trees and fungi is crucial for forest ecosystem management, yet the influence of tree mycorrhizal types, species identity, and diversity on tree-tree interactions and their root-associated fungal communities remains poorly understood. Our study addresses this gap by investigating root-associated fungal communities of different arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) tree species pairs (TSPs) in a subtropical tree diversity experiment, spanning monospecific, two-species, and multi-species mixtures, utilizing Illumina sequencing of the ITS2 region. The study reveals that tree mycorrhizal type significantly impacts the alpha diversity of root-associated fungi in monospecific stands. Meanwhile, tree species identity's influence is modulated by overall tree diversity. Tree-related variables and spatial distance emerged as major drivers of variations in fungal community composition. Notably, in multi-species mixtures, compositional differences between root fungal communities of AM and EcM trees diminish, indicating a convergence of fungal communities irrespective of mycorrhizal type. Interestingly, dual mycorrhizal fungal communities were observed in these multi-species mixtures. This research underscores the pivotal role of mycorrhizal partnerships and the interplay of biotic and abiotic factors in shaping root fungal communities, particularly in varied tree diversity settings, and its implications for effective forest management and biodiversity conservation.


Assuntos
Biodiversidade , Florestas , Micobioma , Micorrizas , Raízes de Plantas , Especificidade da Espécie , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Raízes de Plantas/microbiologia
3.
Glob Chang Biol ; 29(10): 2852-2864, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840370

RESUMO

Higher tree species richness generally increases the storage of soil organic carbon (SOC). However, less attention is paid to the influence of varied tree species composition on SOC storage. Recently, the perspectives for the stronger persistence of SOC caused by the higher molecular diversity of organic compounds were proposed. Therefore, the influences of tree species richness and composition on the molecular diversity of SOC need to be explored. In this study, an index of the evenness of diverse SOC chemical components was proposed to represent the potential resistance of SOC to decomposition under disturbances. Six natural forest types were selected encompassing a diversity gradient, ranging from cold temperate to tropical forests. We examined the correlations of tree species richness, composition, and functional diversity, with the evenness of SOC chemical components at a molecular level by 13 C nuclear magnetic resonance. Across the range, tree species richness correlated to the evenness of SOC chemical components through tree species composition. The negative correlation of evenness of SOC chemical components with tree species composition, and the positive correlation of evenness of SOC chemical components with tree functional diversity were found. These indicate the larger difference in tree species composition and the lower community functional diversity resulted in the higher heterogeneity of SOC chemical components among the communities. The positive correlation of the evenness of SOC chemical components with the important value of indicator tree species, further revealed the specific tree species contributing to the higher evenness of SOC chemical components in each forest type. Soil fungal and bacterial α-diversity had effect on the evenness of SOC chemical components. These findings suggest that the indicator tree species conservation might be preferrable to simply increasing tree species richness, for enhancing the potential resistance of SOC to decomposition.


Assuntos
Ecossistema , Árvores , Carbono/análise , Solo/química , Biodiversidade , Florestas , China
4.
New Phytol ; 231(6): 2297-2307, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891310

RESUMO

The soil pathogen-induced Janzen-Connell (JC) effect is considered as a primary mechanism regulating plant biodiversity worldwide. As predicted by the framework of the classic plant disease triangle, severity of plant diseases is often influenced by temperature, yet insufficient understanding of how increasing temperatures affect the JC effect contributes uncertainty in predictions about how global warming affects biodiversity. We conducted a 3-yr field warming experiment, combining open-top chambers with pesticide treatment, to test the effect of elevated temperatures on seedling mortality of a temperate tree species, Prunus padus, from a genus with known susceptibility to soil-borne pathogens. Elevated temperature significantly increased the mortality of P. padus seedlings in the immediate vicinity of parent trees, concurrent with increased relative abundance of pathogenic fungi identified to be virulent to Prunus species. Our study offers experimental evidence suggesting that global warming significantly intensifies the JC effect on a temperate tree species due to increased relative abundance of pathogenic fungi. This work advances our understanding about changes in the JC effect linked to ongoing global warming, which has important implications for predicting tree diversity in a warmer future.


Assuntos
Solo , Árvores , Biodiversidade , Retroalimentação , Florestas , Plântula
5.
New Phytol ; 228(4): 1256-1268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32496591

RESUMO

Variations in crown forms promote canopy space-use and productivity in mixed-species forests. However, we have a limited understanding on how this response is mediated by changes in within-tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity-productivity relationships (DPRs) in the oldest tropical tree diversity experiment. We conducted whole-tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure. Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree-size effects and neighbourhood-mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root-to-shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood. Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.


Assuntos
Biodiversidade , Árvores , Biomassa , Florestas , Clima Tropical
6.
Ecol Appl ; 30(5): e02093, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32065685

RESUMO

The Amazon harbors one of the most diverse tree floras on earth, and most species depend on mutualists for pollination and seed dispersal. This makes them susceptible to reproductive decline in fragmented forest because many of these mutualists suffer area-related extinction in fragments. It remains unknown, however, whether this highly biodiverse tree flora will reproduce and ultimately persist in fragmented forest. We conducted a 2-yr study of seed fall in an experimentally fragmented, highly diverse Central Amazonian forest. We determined the effect of fragment size (1, 10, 100 ha and continuous forest control) on the density, species richness, functional diversity and functional composition of seeds separated into two data sets: dispersed tree seeds, and undispersed tree seeds. Our results show a 3× reduction in the density of undispersed, non-pioneer tree seeds in fragments of all sizes, indicating reduced seed production of the non-pioneer tree community. The density of dispersed tree seeds was reduced by 6× in fragments of all sizes, while species richness was reduced by 6× in 1-ha fragments and by 3× in 10- and 100-ha fragments compared to intact forest. This provides evidence of reduced community-wide seed dispersal, which became more pronounced with declining fragment size. The functional diversity (FRic) of dispersed tree seeds was reduced 9.6× in small fragments, and significant shifts in the functional composition for 8 of the 10 reproductive and ecological traits studied were identified, suggesting compromised ecosystem functioning. These functional compositional shifts provide evidence for disrupted mutualistic processes in fragments, which include loss of pollination by bees, especially small eusocial (meliponid) bees, and loss of dispersal by primates and large birds, which reduced the frequency of large-seeded tree species. Fragments also lost rare and mature-forest species, and collectively these changes suggest that future tree communities in fragmented Amazonian landscapes will retain a taxonomically and functionally impoverished species pool with a biased functional composition unless efforts are undertaken to conserve dispersal by large frugivores and pollination by meliponid bees.


Assuntos
Dispersão de Sementes , Árvores , Animais , Abelhas , Ecossistema , Florestas , Sementes
7.
Ecol Lett ; 22(6): 999-1008, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30920143

RESUMO

Climate and other global environmental changes are major threats to ecosystem functioning and biodiversity. However, the importance of plant diversity in mitigating the responses of functioning of natural ecosystems to long-term environmental change remains unclear. Using inventory data of boreal forests of western Canada from 1958 to 2011, we found that aboveground biomass growth increased over time in species-rich forests but decreased in species-poor forests, and importantly, aboveground biomass loss from tree mortality was smaller in species-rich than species-poor forests. A further analysis indicated that growth of species-rich (but not species-poor) forests was statistically positively associated with rising CO2 , and that mortality in species-poor forests increased more as climate moisture availability decreased than it did in species-rich forests. In contrast, growth decreased and mortality increased as the climate warmed regardless of species diversity. Our results suggest that promoting high tree diversity may help reduce the climate and environmental change vulnerability of boreal forests.


Assuntos
Mudança Climática , Florestas , Taiga , Canadá , Árvores
9.
Glob Chang Biol ; 25(12): 4257-4272, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486578

RESUMO

There is increasing evidence that mixed-species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity-productivity relationships and diversity-stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one-, two-, three- and five-species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood- and community-level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree-tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%-30% in two- and three-species mixtures and 50% in five-species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño-related drought. Overall, positive diversity-productivity and diversity-stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed-species forests may provide both high levels and high stability of production.


Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Panamá , Clima Tropical
10.
Environ Monit Assess ; 189(11): 586, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29080961

RESUMO

The diversity of forest trees as an indicator of ecosystem health can be assessed using the spectral characteristics of plant communities through remote sensing data. The objectives of this study were to investigate alpha and beta tree diversity using Landsat data for six dates in the Gönen dam watershed of Turkey. We used richness and the Shannon and Simpson diversity indices to calculate tree alpha diversity. We also represented the relationship between beta diversity and remotely sensed data using species composition similarity and spectral distance similarity of sampling plots via quantile regression. A total of 99 sampling units, each 20 m × 20 m, were selected using geographically stratified random sampling method. Within each plot, the tree species were identified, and all of the trees with a diameter at breast height (dbh) larger than 7 cm were measured. Presence/absence and abundance data (tree species number and tree species basal area) of tree species were used to determine the relationship between richness and the Shannon and Simpson diversity indices, which were computed with ground field data, and spectral variables derived (2 × 2 pixels and 3 × 3 pixels) from Landsat 8 OLI data. The Shannon-Weiner index had the highest correlation. For all six dates, NDVI (normalized difference vegetation index) was the spectral variable most strongly correlated with the Shannon index and the tree diversity variables. The Ratio of green to red (VI) was the spectral variable least correlated with the tree diversity variables and the Shannon basal area. In both beta diversity curves, the slope of the OLS regression was low, while in the upper quantile, it was approximately twice the lower quantiles. The Jaccard index is closed to one with little difference in both two beta diversity approaches. This result is due to increasing the similarity between the sampling plots when they are located close to each other. The intercept differences between two investigated beta diversity were strongly related to the development stage of a number of sampling plots in the tree species basal area method. To obtain beta diversity, the tree basal area method indicates better result than the tree species number method at representing similarity of regions which are located close together. In conclusion, NDVI is helpful for estimating the alpha diversity of trees over large areas when the vegetation is at the maximum growing season. Beta diversity could be obtained with the spectral heterogeneity of Landsat data. Future tree diversity studies using remote sensing data should select data sets when vegetation is at the maximum growing season. Also, forest tree diversity investigations can be identified by using higher-resolution remote sensing data such as ESA Sentinel 2 data which is freely available since June 2015.


Assuntos
Biodiversidade , Monitoramento Ambiental , Florestas , Imagens de Satélites , Árvores/crescimento & desenvolvimento , Animais , Ecossistema , Lepidópteros , Estações do Ano , Árvores/classificação , Turquia
11.
Ecol Appl ; 24(8): 2063-2077, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053913

RESUMO

Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average, demonstrating that an increase in disturbance frequency (a potential climate change effect) may considerably alter the structure, composition, and functioning of forest landscapes. Our results indicate that live tree legacies are an important component of disturbance resilience, underlining the potential of retention forestry to address challenges in ecosystem management.


Assuntos
Conservação dos Recursos Naturais/métodos , Florestas , Simulação por Computador , Monitoramento Ambiental , Modelos Biológicos , Oregon , Fatores de Tempo
12.
Plant Biol (Stuttg) ; 26(2): 316-329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041577

RESUMO

Trees have a strong and species-specific influence on biotic and abiotic properties of the soil. Even after the vegetation is removed, the effect can persist to form so-called soil legacies. We investigated the effects of soil legacies of tree species richness on the emergence and growth of tree seedlings, and how these legacy effects modulate the seedling responses to irrigation frequency. We used a 9-year-old tree plantation on former agricultural land in Belgium, which is part of a biodiversity-ecosystem functioning experiment (FORBIO). Soil originating from monocultures and four-species plots, with different species combinations, was translocated to a greenhouse. Five tree species (Betula pendula, Fagus sylvatica, Pinus sylvestris, Quercus robur, and Tilia cordata) were sown and grown for one growing season in these soils. We performed a watering treatment (low and high irrigation frequency) to measure any potential interaction effects between the soil legacies and irrigation frequency. There was no evidence for soil legacy effects of species richness on plant performance or their response to the irrigation frequency. However, the effect of irrigation frequency was dependent on species identity of the tree seedlings. Despite the lack of clear legacy effects, performance measures did show correlated responses that are likely due to species composition effects. We ascribe these patterns to the young age of the forest and the agricultural past land use. At this early stage in forest development, the land-use history likely has a more important role in shaping soil characteristics that affect plant growth and their response to drought, than species diversity.


Assuntos
Ecossistema , Solo , Árvores/fisiologia , Plântula , Agricultura
13.
Ying Yong Sheng Tai Xue Bao ; 35(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523085

RESUMO

To explore potential responses of ecosystem carbon density to changes of community structure during natural regeneration of woody plants, we analyzed the relationships between ecosystem carbon density and its components, tree species diversity, structural diversity (CVDBH) and spatial structure parameters (mingling, aggregation, dominance, crowding) of Cunninghamia lanceolata forests with different sprouting densities (1154, 847 and 465 individuals·hm-2) at the early stage of succession in Baishanzu National Park. The results showed that tree species diversity (species richness index and Shannon diversity index) increased with the decrease of sprouting density of C. lanceolata. Among the stand structural parameters, CVDBH, stand density, and mingling increased with the decrease of sprouting density of C. lanceolata. The stand distribution pattern of different C. lanceolata densities was uniform, with sub-dominant stand growth status and relatively dense status. The carbon density of tree layer under high, medium, and low sprouting densities of C. lanceolata were 57.56, 56.12 and 46.54 t·hm-2, soil carbon density were 104.35, 122.71 and 142.00 t·hm-2, and the total carbon density of ecosystem were 164.59, 182.41 and 190.13 t·hm-2, respectively. There was little variation in carbon density of understory layer and litter layer among different treatments. The carbon density distribution characteristics of different C. lanceolata densities were following the order of soil layer (63.4%-74.7%) > tree layer (24.5%-35.0%) > understory layer and litter layer (0.8%-2.0%). The results of variance partitioning analysis indicated that the change of tree layer carbon density was mainly influenced by stand structure diversity, soil layer carbon density was influenced by both tree species diversity and stand structure diversity, while ecosystem carbon density was mainly influenced by tree species diversity. Stand spatial structure parameters had a relatively little effect on ecosystem carbon density and its components. The sprouting density of C. lanceolata significantly affected ecosystem carbon accumulation during the conversion from C. lanceolata plantations to natural forests. A lower remaining density of C. lanceolata (about 500 individuals·hm-2) was more conducive to forest carbon sequestration.


Assuntos
Cunninghamia , Ecossistema , Humanos , Carbono/química , Florestas , Árvores , Solo/química , China
14.
Sci Total Environ ; 884: 163852, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142026

RESUMO

Increasing tropical cyclone (TC) pressure on temperate forests is inevitable under the recent global increase of the intensity and poleward migration of TCs. However, the long-term effects of TCs on large-scale structure and diversity of temperate forests remain unclear. Here, we aim to ascertain the legacy of TCs on forest structure and tree species richness by using structural equation models that consider several environmental gradients and use an extensive dataset containing >140,000 plots with >3 million trees from natural temperate forests across eastern United States impacted by TCs. We found that high TC activity (a combination of TC frequency and intensity) leads to a decrease in maximum tree sizes (height and diameter), an increase in tree density and basal area, and a decline in the number of tree species and recruits. We identified TC activity as the strongest predictor of forest structure and species richness in xeric (dry) forests, while it had a weaker impact on hydric (wet) forests. We highlight the sensitivity of forest structure and tree species richness to impacts of likely further increase of TC activity in interaction with climate extremes, especially drought. Our results show that increased TC activity leads to the homogenization of forest structure and reduced tree species richness in U.S. temperate forests. These findings suggest that further declines in tree species richness may be expected because of the projected increase of future levels of TC activity.


Assuntos
Tempestades Ciclônicas , Árvores , Estados Unidos , Biodiversidade , Florestas , Clima
15.
Front Microbiol ; 13: 790189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356520

RESUMO

Despite the microbiome's key role in health and fitness, little is known about the environmental factors shaping the gut microbiome of wild birds. With habitat fragmentation being recognised as a major threat to biological diversity, we here determined how forest structure influences the bacterial species richness and diversity of wild great tit nestlings (Parus major). Using an Illumina metabarcoding approach which amplifies the 16S bacterial ribosomal RNA gene, we measured gut microbiota diversity and composition from 49 great tit nestlings, originating from 23 different nests that were located in 22 different study plots across a gradient of forest fragmentation and tree species diversity. Per nest, an average microbiome was determined on which the influence of tree species (composition and richness) and forest fragmentation (fragment area and edge density) was examined and whether this was linked to host characteristics (body condition and fledging success). We found an interaction effect of edge density with tree species richness or composition on both the microbial richness (alpha diversity: Chao1 and Shannon) and community structure (beta diversity: weighted and unweighted UniFrac). No significant short-term impact was observed of the overall faecal microbiome on host characteristics, but rather an adverse effect of specific bacterial genera on fledging success. These results highlight the influence of environmental factors on the microbial richness as well as the phylogenetic diversity during a life stage where the birds' microbiota is shaped, which could lead to long-term consequences for host fitness.

16.
Ecol Evol ; 10(21): 12233-12245, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209284

RESUMO

Wind and bark beetle disturbances have increased in recent decades, affecting Europe's coniferous forests with particular severity. Management fostering forest diversity and resilience is deemed to effectively mitigate disturbance impacts, yet its efficiency and interaction with other disturbance management measures remain unclear.We focused on Central Europe, which has become one of the hotspots of recent disturbance changes. We used the iLand ecosystem model to understand the interplay between species composition of the forest, forest disturbance dynamics affected by climate change, and disturbance management. The tested measures included (a) active transformation of tree species composition toward site-matching species; (b) intensive removal of windfelled trees, which can support the buildup of bark beetle populations; and (c) reduction of mature and vulnerable trees on the landscape via modified harvesting regimes.We found that management systems aiming to sustain the dominance of Norway spruce in the forest are failing under climate change, and none of the measures applied could mitigate the disturbance impacts. Conversely, management systems fostering forest diversity substantially reduced the level of disturbance. Significant disturbance reduction has been achieved even without salvaging and rotation length reduction, which is beneficial for ecosystem recovery, carbon, and biodiversity. Synthesis and applications: We conclude that climate change amplifies the contrast in vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance. Whereas forests dominated by Norway spruce are not likely to be sustained in Central Europe under climate change, different management strategies can be applied in species-diverse forests to reach the desired control over the disturbance dynamic. Our findings justify some unrealistic expectations about the options to control disturbance dynamics under climate change and highlight the importance of management that fosters forest diversity.

17.
Front Microbiol ; 10: 1519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338079

RESUMO

Amplicon-based analysis of 16S rRNA genes and transcripts was used to assess the effect of tree species composition on soil bacterial community structure and function in a temperate deciduous forest. Samples were collected from mono and mixed stands of Fagus sylvatica (beech), Carpinus betulus (hornbeam), Tilia sp. (lime), and Quercus sp. (oak) in spring, summer, and autumn. Soil bacterial community exhibited similar taxonomic composition at total (DNA-based) and potentially active community (RNA-based) level, with fewer taxa present at active community level. Members of Rhizobiales dominated at both total and active bacterial community level, followed by members of Acidobacteriales, Solibacterales, Rhodospirillales, and Xanthomonadales. Bacterial communities at total and active community level showed a significant positive correlation with tree species identity (mono stands) and to a lesser extent with tree species richness (mixed stands). Approximately 58 and 64% of indicator operational taxonomic units (OTUs) showed significant association with only one mono stand at total and active community level, respectively, indicating a strong impact of tree species on soil bacterial community composition. Soil C/N ratio, pH, and P content similarly exhibited a significant positive correlation with soil bacterial communities, which was attributed to direct and indirect effects of forest stands. Seasonality was the strongest driver of predicted metabolic functions related to C fixation and degradation, and N metabolism. Carbon and nitrogen metabolic processes were significantly abundant in spring, while C degradation gene abundances increased from summer to autumn, corresponding to increased litterfall and decomposition. The results revealed that in a spatially homogenous forest soil, tree species diversity and richness are dominant drivers of structure and composition in soil bacterial communities.

18.
Ecol Evol ; 7(19): 7965-7974, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043048

RESUMO

Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life-history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR.

19.
Biota neotrop. (Online, Ed. port.) ; 11(2): 139-152, Apr.-June 2011. ilus, graf
Artigo em Português | LILACS | ID: lil-596869

RESUMO

O trabalho foi desenvolvido em duas parcelas de 1 ha de Floresta Ombrófila Densa Montana do Núcleo Santa Virgínia, Parque Estadual da Serra do Mar, São Luiz do Paraitinga/SP, Brasil. Além de determinar a estrutura e a composição florística do componente arbóreo de cada parcela, o trabalho teve como objetivo comparar uma área (PLOT N) onde, segundo relatos de antigos moradores da região, houve corte seletivo de madeira até meados da década de 70 do século passado, com outra área (PLOT K) sem histórico de perturbação antrópica recente. As duas parcelas, que distam entre si cerca de 4 km, foram subdivididas em 100 subparcelas de 10 × 10 m e todos os indivíduos com DAP > 4,8 cm foram marcados, mapeados, medidos e identificados. Ao todo foram amostrados 3.503 indivíduos, sendo 2.269 árvores (64,7 por cento), 860 palmeiras (24,5 por cento) e 159 (4,5 por cento) fetos arborescentes, distribuídos em 265 espécies e 51 famílias. O restante dos indivíduos (215) estava morto. Dentre as famílias mais abundantes (Arecaceae, Myrtaceae, Lauraceae, Cyatheaceae), Monimiaceae é a única considerada típica da fitofisionomia Montana da Floresta Ombrófila Densa Atlântica. Euterpe edulis Mart. (Arecaceae) é a espécie dominante no PLOT K (pristina), onde foram registrados 1.852 indivíduos, distribuídos em 189 espécies e 43 famílias, sendo Myrtaceae (48), Lauraceae (26) e Monimiaceae (13) as que apresentaram a maior diversidade de espécies. É importante mencionar que moitas de bambu nativo (Merostachys neesii Ruprecht, Poaceae) estão presentes em 93 das 100 subparcelas desse plot, totalizando 3.813 colmos. Em contraste, no PLOT N, em que Euterpe edulis também é a espécie dominante, mas os bambus não estão tão presentes, foram identificados 1.436 indivíduos, distribuídos em 149 espécies e 40 famílias, com destaque para Myrtaceae (27), Lauraceae (15) e Fabaceae (oito) em termos de número de espécies. Na área de floresta secundária (PLOT N) o índice de diversidade de Shannon (H' = 4,05 ) e o índice de equidade (J ' = 0,8) são mais altos do que os valores encontrados na área que não sofreu corte seletivo (PLOT K) onde H' = 3,72 nats.ind-1 e J' = 0,7. No entanto, a estimativa do número máximo de espécies esperado no ponto de rarefação do PLOT N (IC por cento 95-158,54) se sobrepõe parcialmente à estimativa do número mínimo de espécies do PLOT K (95 por cento - 157,12), mostrando que o número de espécies de ambas as áreas se equivaleriam em 1420 indivíduos. Embora a maior árvore amostrada tenha sido encontrada no PLOT K, no qual os estratos da floresta são mais evidentes, não há diferença significativa entre as somas de área basal de indivíduos vivos das duas parcelas. Considerando o histórico de perturbação da região, os resultados sugerem que a recuperação da estrutura da floresta pode ocorrer dentro de 25 anos, mas, como mostrado pelo número total de espécies e pelo índice H' do PLOT K, este período é insuficiente para recuperação da diversidade de espécies arbóreas características da Floresta Ombrófila Densa Atlântica antiga.


The study was conducted in two areas of Montana Atlantic Rainforest at Núcleo Santa Virgínia, Serra do Mar State Park, Brazil. The aim was to investigate structural and floristic composition of each area and the differences between them, knowing that one has not been disturbed recently and the other was subjected to selective logging until 1970, as reported by local people. We installed two 1 ha (PLOT K and PLOT N), approximately 4 km away from each other, and within this plots all individuals with DBH > 4.8 cm were recorded. Considering the two plots we sampled 3,503 individuals (2,269 trees - 64.7 percent; 860 palms - 24.5 percent; and 159 ferns - 4.5 percent), distributed in 265 species and 51 families. The rest (215 individuals) was dead. Among the most abundant families (Arecaceae, Myrtaceae, Lauraceae, Cyatheaceae) Monimiaceae is the only one classified as typical of the Montane Ombrophylus Dense Atlantic Forest. Euterpe edulis Mart. (Arecaceae) is the dominant species in PLOT K (old), where we recorded 1,852 individuals, 189 species and 43 families, with Myrtaceae (48), Lauraceae (26) and Monimiaceae (13) presenting the higher number of species. It is important to mention that clumps of a native bamboo (Merostachys neesii Ruprecht, Poaceae) are present in 93 of the 100 subparcels of PLOT K, summing up 3,813 culms. In contrast, in PLOT N (secondary) where palm heart (Euterpe edulis) is also the dominant species but bamboos are not so conspicuous, we recorded 1436 individuals, 149 species and 40 families, with Myrtaceae (27), Lauraceae (15) and Fabaceae (eight) being the ones with higher number of species. In the plot of secondary forest (N) Shannon's diversity index (H' = 4.05 ) and the eveness index (J ' = 0.8) are higher than those recorded in the old plot of forest (K) where H' = 3,72 nats.ind-1 and J' = 0.7. Plots K and N have a low similarity (Jaccard index C J = 0,3), with only 94 species (34,47 percent) in common, and 102 (38,5 percent) occurring exclusively in PLOT K. However, the maximum estimate of species expected at the point of rarefaction of PLOT N (IC 95 percent - 158.54) overlaps with the minimum estimate of species at the same point of PLOT K (95 percent - 157.12), showing that the number of species of both areas would be equivalent in the number of 1,420 individuals. Although the largest tree sampled was found in PLOT K, where forest stratification is more evident, there is no significant difference between the sums of basal area of living individuals. Considering the disturbance history of the region, the results suggest that forest structure recovery may occur within 25 years but, as shown by the total number of species and by the diversity parameters determined, species richness does not recover within this time frame.

20.
Acta amaz ; Acta amaz;38(2): 213-222, 2008. graf, tab
Artigo em Português | LILACS | ID: lil-488732

RESUMO

Este trabalho objetiva avaliar a composição florística e a fitossociologia de espécies arbóreas do parque fenológico da Embrapa Amazônia Ocidental no Distrito Agropecuário da Suframa (DAS), Manaus-AM, a fim de subsidiar seleções futuras de árvores matrizes visando estudos fenológicos e a implantação de áreas de coleta de sementes. Foram alocadas aleatoriamente 20 parcelas de 10m x 50 m ao longo de um transecto, amostrando-se todos os indivíduos com diâmetro a 1,30 m do solo, (DAP) ≥ 20,0 cm. Foram registrados 240 indivíduos, distribuídos em 100 espécies, 70 gêneros e 29 famílias. As famílias de maior importância ecológica são, em ordem decrescente, Lecythidaceae, Sapotaceae, Mimosaceae, Caesalpiniaceae, Chrysobalanaceae, Fabaceae, Humiriaceae, Moraceae, Vochysiaceae e Apocynaceae. Essas famílias contribuem com 67 por cento da riqueza local de espécies e com 75,8 por cento do número de indivíduos, sugerindo que a diversidade vegetal da área está concentrada em poucas famílias. A família Lecythidaceae possui os maiores valores de dap e número de indivíduos, sendo Sapotaceae a que possui a maior riqueza de espécies na área. As espécies mais importantes, segundo o Índice de Valor de Importância-IVI, são Eschweilera coriacea (DC) S.A. Mori; Qualea paraensis Ducke; Vantanea macrocarpa Ducke; Eschweilera atropetiolata< S.A. Mori; Couratari stellata A.C. Sm.; Lecythis usidata Miers; Eperua duckeana R.S. Cowan; Eschweilera amazonica R. Knuth e Chrysophyllum manaosense (Aubr.) T.D. Penn. O valor do índice de diversidade de Shannon de 2,71, aparentemente baixo, deve ser interpretado com cuidado ao se avaliar a diversidade do parque fenológico, uma vez que o diâmetro mínimo de 20,0 cm adotado neste trabalho pode ter restringido a identificação de um maior número de espécies. O índice de similaridade de Sorensen indicou uma alta dissimilaridade florística entre as parcelas. A primeira classe de diâmetro medindo de 20cm -30cm foi a que apresentou...


This research was carried out to study the floristic composition and phytosociology of tree species in the phenological site of Embrapa Western Amazonia, Suframa Agropecuary District-SAD, Manaus-AM, aiming to help future selection of seed trees, for the establishment of seed collecting areas. Twenty plots of 10m x 50m were studied, along a topographic sequence, where trees with a diameter at breast height (dbh) ≥ 20,0cm were inventoried. A total of 240 trees belonging to 29 families, in 70 genera with 100 species were identified. The most important families, in a decreasing order, were: Lecythidaceae, Sapotaceae, Mimosaceae, Caesalpiniaceae, Chrysobalanaceae, Fabaceae, Humiriaceae, Moraceae, Vochysiaceae and Apocynaceae. These families constituted 67 percent of the local species richness and 75,8 percent of the number of individuals, suggesting that diversity is concentrated in a few families. Lecythidaceae had the largest dbh and number of individuals, and Sapotaceae the greatest richness species in the area. The most important species (IVIs) were Eschweilera coriacea (DC.) S.A. Mori; Qualea paraensis Ducke; Vantanea macrocarpa Ducke; Eschweilera atropetiolata S.A. Mori; Couratari stellata A.C. Sm.; Lecythis usidata Miers.; Eperua duckeana R.S. Cowan; Eschweilera amazonica R. Knuth and Chrysophyllum manaosense (Aubr.) T.D. Penn. The Shannon diversity and Sorensen similarity indexes indicated a low diversity and a high dissimilarity floristic among plots in this study for the minimum dbh considered. The diameter of the first class measuring 20cm - 30cm presented the most number of individuals, contributing 45 percent of samples. Above the center class of 55cm of dbh, around 90 percent of species have been represented by only one.


Assuntos
Agricultura Florestal , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA