Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell Biol Int ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023281

RESUMO

Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.

2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542130

RESUMO

Systemic Sclerosis (SSc) is a heterogeneous autoimmune disease characterized by widespread vasculopathy, the presence of autoantibodies and the progressive fibrosis of skin and visceral organs. There are still many questions about its pathogenesis, particularly related to the complex regulation of the fibrotic process, and to the factors that trigger its onset. Our recent studies supported a key role of N-formyl peptide receptors (FPRs) and their crosstalk with uPAR in the fibrotic phase of the disease. Here, we found that dermal fibroblasts acquire a proliferative phenotype after the activation of FPRs and their interaction with uPAR, leading to both Rac1 and ERK activation, c-Myc phosphorylation and Cyclin D1 upregulation which drive cell cycle progression. The comparison between normal and SSc fibroblasts reveals that SSc fibroblasts exhibit a higher proliferative rate than healthy control, suggesting that an altered fibroblast proliferation could contribute to the initiation and progression of the fibrotic process. Finally, a synthetic compound targeting the FPRs/uPAR interaction significantly inhibits SSc fibroblast proliferation, paving the way for the development of new targeted therapies in fibrotic diseases.


Assuntos
Receptores de Formil Peptídeo , Escleroderma Sistêmico , Humanos , Receptores de Formil Peptídeo/metabolismo , Escleroderma Sistêmico/patologia , Fibrose , Fibroblastos/metabolismo , Autoanticorpos/metabolismo , Pele/metabolismo , Células Cultivadas
3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674896

RESUMO

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Assuntos
COVID-19 , Lesão Pulmonar , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , COVID-19/complicações , Fibrose , Plasminogênio , Bleomicina/toxicidade
4.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682744

RESUMO

Traditionally, platelets have been exclusively considered for their procoagulant and antifibrinolytic effects during normal activation of hemostasis. Effectively, activated platelets secrete coagulation factors, expose phosphatidylserine, and promote thrombin and fibrin production. In addition to procoagulant activities, platelets confer resistance of thrombi to fibrinolysis by inducing clot retraction of the fibrin network and release of huge amounts of plasminogen activator inhibitor-1, which is the major physiologic inhibitor of the fibrinolytic cascade. However, the discovery of multiple relations with the fibrinolytic system, also termed Plasminogen Activation System (PAS), has introduced new perspectives on the platelet role in fibrinolysis. Indeed, the activated membrane surface of platelets provides binding sites on which fibrinolytic enzymes can be activated. This review discusses the evidence of the profibrinolytic properties of platelets through the description of PAS components and related proteins that are contained in or bind to platelets. Our analyses of literature data lead to the conclusion that in the initial phase of the hemostatic process, antifibrinolytic effects prevail over profibrinolytic activity, but at later stages, platelets might enhance fibrinolysis through the engagement of PAS components. A better understanding of spatial and temporal characteristics of platelet-mediated fibrinolysis during normal hemostasis could improve therapeutic options for bleeding and thrombotic disorders.


Assuntos
Antifibrinolíticos , Trombose , Antifibrinolíticos/farmacologia , Plaquetas/metabolismo , Fibrina/metabolismo , Fibrinólise , Humanos , Plasminogênio/metabolismo , Trombose/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo
5.
Bull Exp Biol Med ; 173(1): 5-9, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35622258

RESUMO

It was suggested that the urokinase system plays a certain role in the regulation of activity of the endothelial-mesenchymal transition and in the development of perivascular fibrosis. Urokinase (uPA), the key component of the urokinase system, is a serine protease that binds to its receptor on the cell surface (uPAR) and affects the cell microenvironment components through the formation of plasmin, remodeling of the extracellular matrix, release of growth factors, and initiation of intracellular signals. The heart of PLAUR gene knockout C57BL/129 (uPAR-/-) mice showed signs of vasculopathy: reduced number of capillaries/arterioles, signs of endothelial-mesenchymal transition in endothelial cells, vascular wall remodeling, and deposition of extracellular matrix components. These changes were combined with enhanced expression of urokinase and active forms of TGF-ß1. Apparently, uPAR is a part of a multicomponent system that provides multifaceted regulatory effects on the components of forming vessels and vascular wall cells, which allows considering it as a possible target for targeted antifibrotic therapy.


Assuntos
Receptores de Ativador de Plasminogênio Tipo Uroquinase , Ativador de Plasminogênio Tipo Uroquinase , Animais , Células Endoteliais/metabolismo , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/genética
6.
J Biol Chem ; 295(2): 619-630, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31819012

RESUMO

Growth-associated protein 43 (GAP-43) plays a central role in the formation of presynaptic terminals, synaptic plasticity, and axonal growth and regeneration. During development, GAP-43 is found in axonal extensions of most neurons. In contrast, in the mature brain, its expression is restricted to a few presynaptic terminals and scattered axonal growth cones. Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin and activates signaling pathways that promote cell migration, proliferation, and survival. In the developing brain, uPA induces neuritogenesis and neuronal migration. In contrast, the expression and function of uPA in the mature brain are poorly understood. However, recent evidence reveals that different forms of injury induce release of uPA and expression of uPAR in neurons and that uPA/uPAR binding triggers axonal growth and synapse formation. Here we show that binding of uPA to uPAR induces not only the mobilization of GAP-43 from the axonal shaft to the presynaptic terminal but also its activation in the axonal bouton by PKC-induced calcium-dependent phosphorylation at Ser-41 (pGAP-43). We found that this effect requires open presynaptic N-methyl-d-aspartate receptors but not plasmin generation. Furthermore, our work reveals that, following its activation by uPA/uPAR binding, pGAP-43 colocalizes with presynaptic vesicles and triggers their mobilization to the synaptic release site. Together, these data reveal a novel role of uPA as an activator of the synaptic vesicle cycle in cerebral cortical neurons via its ability to induce presynaptic recruitment and activation of GAP-43.


Assuntos
Proteína GAP-43/metabolismo , Sinapses/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteína GAP-43/análise , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/análise
7.
Oncologist ; 26(8): e1460-e1469, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33687124

RESUMO

BACKGROUND: Clinical outcomes of patients with glioma are still poor, even after standard treatments, including surgery combined with radiotherapy and chemotherapy. New therapeutic strategies and targets for glioma are urgently needed. Plasminogen activator urokinase receptor (PLAUR), a highly glycosylated integral membrane protein, is reported to modulate plasminogen activation and extracellular matrix degradation in many malignant cancers, but its role in gliomas remains unclear. METHODS: Glioma samples with mRNA sequencing data and clinical information from the Chinese Glioma Genome Atlas (n = 310) data set and The Cancer Genome Atlas (n = 611) data set were collected for this study. Analyses using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, Cox regression, and nomograms were conducted to evaluate the prognostic performance of PLAUR expression. Analyses using Metascape, ESTIMATE, EPIC, and immunohistochemical staining were performed to reveal the potential biological mechanism. The statistical analysis and graphical work were completed using SPSS, R language, and GraphPad Prism. RESULTS: PLAUR was highly expressed in phenotypes associated with glioma malignancy and could serve as an independent prognostic indicator. Functional analysis revealed the correlation between PLAUR and immune response. Further studies found that samples with higher PLAUR expression were infiltrated with fewer CD8 T cells and many more M2 macrophages. Strong positive correlation was demonstrated between PLAUR expression and some immunosuppressive markers, including immune checkpoints and cytokines. These findings were also confirmed in patient samples. CONCLUSION: Our results elucidated the clinical significance and immunosuppressive effect of PLAUR in gliomas, which might provide some clues in glioma immunotherapy. IMPLICATIONS FOR PRACTICE: Although the efficacy of immunotherapy has been verified in other tumors, its application in glioma is impeded because of the unique microenvironment. Tumor-associated macrophages, which are particularly abundant in a glioma mass, contribute much to the immunosuppressive microenvironment and offer new opportunities in glioma immunotherapy. The results of this study identified plasminogen activator urokinase receptor (PLAUR) expression as a potential marker to predict the infiltration of macrophages and the status of immune microenvironment in patients with glioma, suggesting that treatment decisions could be based on PLAUR level when administering immunotherapeutics. The soluble PLAUR in blood and other body fluids would make this approach easy to implement in the clinic.


Assuntos
Glioma , Ativador de Plasminogênio Tipo Uroquinase , Biomarcadores , Glioma/genética , Glioma/terapia , Humanos , Ativadores de Plasminogênio , Prognóstico , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Microambiente Tumoral
8.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923400

RESUMO

Proteolysis is a key event in several biological processes; proteolysis must be tightly controlled because its improper activation leads to dramatic consequences. Deregulation of proteolytic activity characterizes many pathological conditions, including cancer. The plasminogen activation (PA) system plays a key role in cancer; it includes the serine-protease urokinase-type plasminogen activator (uPA). uPA binds to a specific cellular receptor (uPAR), which concentrates proteolytic activity at the cell surface, thus supporting cell migration. However, a large body of evidence clearly showed uPAR involvement in the biology of cancer cell independently of the proteolytic activity of its ligand. In this review we will first describe this multifunctional molecule and then we will discuss how uPAR can sustain most of cancer hallmarks, which represent the biological capabilities acquired during the multistep cancer development. Finally, we will illustrate the main data available in the literature on uPAR as a cancer biomarker and a molecular target in anti-cancer therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Biomarcadores Tumorais/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
9.
J Biol Chem ; 294(18): 7403-7418, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30894413

RESUMO

The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in uPAR, one puzzling enigma remains unexplored. Why does the first LU domain in uPAR (DI) lack one of its consensus disulfide bonds, when the absence of this particular disulfide bond impairs the correct folding of other single LU domain-containing proteins? Here, using a variety of contemporary biophysical methods, we found that reintroducing the two missing half-cystines in uPAR DI caused the spontaneous formation of the corresponding consensus 7-8 LU domain disulfide bond. Importantly, constraints due to this cross-link impaired (i) the binding of uPAR to its primary ligand urokinase and (ii) the flexible interdomain assembly of the three LU domains in uPAR. We conclude that the evolutionary deletion of this particular disulfide bond in uPAR DI may have enabled the assembly of a high-affinity urokinase-binding cavity involving all three LU domains in uPAR. Of note, an analogous neofunctionalization occurred in snake venom α-neurotoxins upon loss of another pair of the plesiotypic LU domain half-cystines. In summary, elimination of the 7-8 consensus disulfide bond in the first LU domain of uPAR did have significant functional and structural consequences.


Assuntos
Evolução Biológica , Deleção de Sequência , Sulfetos/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Fenômenos Biofísicos , Quimotripsina/metabolismo , Glicosilação , Cinética , Ligantes , Dobramento de Proteína , Proteólise , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Ativador de Plasminogênio Tipo Uroquinase/química
10.
J Cell Physiol ; 235(9): 6268-6286, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31990070

RESUMO

The urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA-uPAR interaction can lead to the activation of transcription factors, mitogen-activated protein kinase signaling pathways and RTK cascades. Elevated expression of uPA and uPAR is markedly associated with cancer progression and metastasis and correlates with a poor prognosis in clinics. Targeting the urokinase system has proved to be effective in experimental models in vitro and in vivo, however, in clinics the inhibition of the uPA/uPAR system has fallen short of expectations, suggesting that the question of the functional relevance of uPA/uPAR system is far from being moot. Recently, using CRISPR/Cas9 technology, we have shown that uPAR knockout decreases the proliferation of neuroblastoma Neuro2a cells in vitro. In the present study we demonstrate that uPAR expression is essential for maintaining the epithelial phenotype in Neuro2a cells and that uPAR silencing promotes epithelial-mesenchymal transition (EMT) and increased cell migration. Accordingly, uPAR knockout results in the downregulation of epithelial markers (E-cadherin, occludin, and claudin-5) and in the increase of mesenchymal markers (N-cadherin, α-smooth muscle actin, and interleukin-6). In search of the molecular mechanism underlying these changes, we identified uPA as a key component. Two key insights emerged as a result of this work: in the absence of uPAR, uPA is translocated into the nucleus where it is presumably involved in the activation of transcription factors (nuclear factor κB and Snail) resulting in EMT. In uPAR-expressing cells, uPAR functions as a uPA "trap" that binds uPA on the cell surface and promotes controlled uPA internalization and degradation in lysosomes.


Assuntos
Núcleo Celular/genética , Proteínas de Membrana/genética , Neuroblastoma/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Neuroblastoma/patologia , Transdução de Sinais
11.
Eur J Neurosci ; 51(7): 1559-1572, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31587391

RESUMO

Epileptogenesis progressively leads to the rearrangement of normal neuronal networks into more excitable ones and can be viewed as a form of neuroplasticity, the molecular mechanisms of which still remain obscure. Here, we studied pentylenetetrazole seizure-induced regulation of genes for plasminogen activator system in the mouse brain. We found that expression of tissue plasminogen activator (tPA) and urokinase receptor (uPAR) mRNA was strongly increased in the mouse cerebral cortex, hippocampus, striatum and amygdala as early as 3 hr after pentylenetetrazole seizures. Such early activity-induced expression of uPAR in the central nervous system has not been demonstrated before. uPAR mRNA accumulation was followed by elevation of uPAR protein, indicating a complete transcription-translation process. Both tPA gene induction and uPAR gene induction were independent of the protein synthesis, suggesting that they are regulated by neural activity as immediate-early genes. In contrast to tPA and uPAR genes, the expression of which returned to the basal level 6 hr following seizures, urokinase and plasminogen activator inhibitor-1 gene expression showed a delayed activation only at 3 days after seizures. In conclusion, our results suggest an important sensitivity of the brain plasminogen activator system to seizure activity which raises the question of its role in activity-dependent neural tissue remodeling in pathological and normal conditions.


Assuntos
Pentilenotetrazol , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Convulsões , Ativador de Plasminogênio Tipo Uroquinase , Animais , Encéfalo/metabolismo , Genes Precoces , Camundongos , Pentilenotetrazol/toxicidade , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
12.
Clin Exp Allergy ; 50(3): 343-351, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31899843

RESUMO

BACKGROUND: Chronic spontaneous urticaria (CSU) is characterized by recurrent itchy weals and/or angioedema and is believed to be driven by mast cell activation. It was shown that excessive mast cell activation during anaphylaxis initiates contact activation, resulting in bradykinin release. Evidence for bradykinin release was never demonstrated in CSU. OBJECTIVE: To study biomarkers of bradykinin release in CSU. METHODS: Plasma samples of CSU patients were collected during routine visits at the outpatient clinic. Cleaved high molecular weight kininogen (cHK) was used as a biomarker for bradykinin release. cHK, factor XIIa-C1-inhibitor (FXIIa-C1-INH), kallikrein-C1-INH, plasmin-antiplasmin (PAP) complexes and soluble urokinase-type plasminogen activator receptor (suPAR) levels were determined by ELISA. Clinical data and data on tryptase levels were collected from medical records. cHK levels were compared to previously determined levels in hereditary angioedema (HAE). RESULTS: One hundred seventeen samples from 88 CSU patients and 28 samples from healthy controls were analysed. Median cHK level in CSU was 9.1% (range: 1.4%-21.5%), significantly increased compared to healthy controls (median 6.0% range: 0%-19.9%; P = .0005) and comparable to HAE (n = 46, median 10.3%, range 0%-44.3%, P > .9999). cHK levels normalized in patients during disease remission (median 6.5% range 1.5%-20.8%) but were not dependent on the presence of angioedema, acute angioedema attacks or response to antihistamines. Surprisingly, cHK levels were inversely correlated to serum tryptase (r = -0.65 P = .0137). C1-INH complexes and suPAR levels were not elevated in patients compared to healthy controls. PAP-complex levels in patients were elevated compared to healthy controls but there was no correlation between PAP-complex and cHK levels. CONCLUSIONS: cHK levels are elevated in symptomatic CSU patients compared to healthy controls, indicating increased bradykinin production. Increased cHK levels are not limited to patients with angioedema. CLINICAL RELEVANCE: If elevated bradykinin generation has clinical implications in the pathology of CSU is open to debate.


Assuntos
Bradicinina , Urticária Crônica , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Bradicinina/sangue , Bradicinina/imunologia , Urticária Crônica/sangue , Urticária Crônica/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Mol Biol (Mosk) ; 54(1): 103-113, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32163394

RESUMO

The degradation of the extracellular matrix plays an important role in the processes of morphogenesis, angio- and neurogenesis, wound healing, inflammation, carcinogenesis and others. The urokinase receptor uPAR is an important participant in processes that regulate extracellular proteolysis, cell adhesion to the extracellular matrix, cell migration along the chemokine gradient, proliferation and survival involving growth factor receptors. The presence of the GPI anchor and the absence of transmembrane and cytoplasmic domains in uPAR promote involvement of membrane partners for the realization of uPAR signal effects. In some studies, involvement of the fMLP chemokine receptor FPRL in the regulation of uPAR-dependent directed migration has been shown. Moreover, the migration of neural progenitors and their maturation into neurons during the formation of brain structures are regulated by chemokine receptors. Despite the data on the role of uPARin the processes of morphogenesis, little is known about the interactions between uPAR and chemokine receptors in guidance processes during nerve growth and regeneration. In the present work, it was shown for the first time that the soluble form of uPAR (suPAR) regulates the trajectory of axon outgrowth, and this effect does not depend on the presence of urokinase. It was also shown that regulation of the directed axon growth is based on the interaction of suPAR with the chemokine receptor FPRL1. These data show new mechanisms for the participation of the urokinase system in the regulation of axon guidance.


Assuntos
Crescimento Neuronal/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Orientação de Axônios/fisiologia , Movimento Celular , Matriz Extracelular/metabolismo , Humanos , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
14.
J Biol Chem ; 293(24): 9234-9247, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720403

RESUMO

Synaptic repair in the ischemic brain is a complex process that requires reorganization of the actin cytoskeleton. Ezrin, radixin, and moesin (ERM) are a group of evolutionarily conserved proteins that link the plasma membrane to the actin cytoskeleton and act as scaffolds for signaling transduction. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to the urokinase-type plasminogen activator receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface and activates intracellular signaling pathways. Early studies indicate that uPA and uPAR expression increase during the recovery phase from an ischemic stroke and that uPA binding to uPAR promotes neurorepair in the ischemic brain. The in vitro and in vivo studies presented here show that either the release of neuronal uPA or treatment with recombinant uPA induces the local synthesis of ezrin in the synapse and the recruitment of ß3-integrin to the postsynaptic density (PSD) of cerebral cortical neurons by a plasminogen-independent mechanism. We found that ß3-integrin has a double effect on ezrin, inducing its recruitment to the PSD via the intercellular adhesion molecule-5 (ICAM-5) and its subsequent activation by phosphorylation at Thr-567. Finally, our data indicate that by triggering the reorganization of the actin cytoskeleton in the postsynaptic terminal, active ezrin induces the recovery of dendritic spines and synapses that have been damaged by an acute ischemic stroke. In summary, our data show that uPA-uPAR binding promotes synaptic repair in the ischemic brain via ezrin-mediated reorganization of the actin cytoskeleton in the postsynaptic terminal.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Sinapses/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Integrina beta3/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sinapses/patologia
15.
Int J Cancer ; 145(10): 2827-2839, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31381136

RESUMO

Fibroblasts are among the most abundant stromal cells in the tumor microenvironment (TME), progressively differentiating into activated, motile, myofibroblast-like, protumorigenic cells referred to as Cancer-Associated Fibroblasts (CAFs). To investigate the mechanisms by which epithelial cells direct this transition, the early stages of tumorigenesis were exemplified by indirect cocultures of WI-38 or human primary breast cancer fibroblasts with human mammary epithelial cells expressing an inducible c-Myc oncogene (MCF10A-MycER). After c-Myc activation, the conditioned medium (CM) of MCF10A-MycER cells significantly enhanced fibroblast activation and mobilization. As this was accompanied by decreased insulin-like growth factor binding protein-6 (IGFBP-6) and increased insulin-like growth factor-1 and IGF-II (IGF-I, IGF-II) in the CM, IGFs were investigated as key chemotactic factors. Silencing IGFBP-6 or IGF-I or IGF-II expression in epithelial cells or blocking Insulin-like growth factor 1 receptor (IGF-1R) activity on fibroblasts significantly altered fibroblast mobilization. Exposure of WI-38 fibroblasts to CM from induced MCF10A-MycER cells or to IGF-II upregulated FAK phosphorylation on Tyr397 , as well as the expression of α-smooth muscle actin (α-SMA), features associated with CAF phenotype and increased cell migratory/invasive behavior. In three-dimensional (3D)-organotypic assays, WI-38 or human primary fibroblasts, preactivated with either CM from MCF10A-MycER cells or IGFs, resulted in a permissive TME that enabled nontransformed MCF10A matrix invasion. This effect was abolished by inhibiting IGF-1R activity. Thus, breast epithelial cell oncogenic activation and stromal fibroblast transition to CAFs are linked through the IGFs/IGF-1R axis, which directly promotes TME remodeling and increases tumor invasion.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral , Mama/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Feminino , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Invasividade Neoplásica/patologia , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
16.
Cell Mol Life Sci ; 75(10): 1889-1907, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29184982

RESUMO

The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvß3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.


Assuntos
Proliferação de Células , Receptores ErbB/metabolismo , Integrina alfaVbeta3/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Moleculares , Fosforilação , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química
17.
Bull Exp Biol Med ; 167(3): 315-319, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346863

RESUMO

Vitronectin, extracellular matrix protein, plays an important role in embryonic development and in organ and tissue reparation. A unique characteristic of vitronectin is specific binding of various biological molecules, including urokinase receptor (uPAR), extracellular matrix components, adhesion receptors, growth factors, thus supporting the modulation of cell behavior. Vitronectin is in fact not found in intact myocardium, while after infarction its level increases significantly, which correlates with accumulation of uPAR+ progenitor cardiac cells in the focus. The cells isolated from the heart of wild type mice are characterized by higher adhesion to vitronectin than progenitor cardiac cells from the myocardium of uPAR knockout mice. In addition, inhibition of urokinase receptor with specific antibodies on the surface of the progenitor cardiac cells of wild type mice leads to attenuation of their adhesive activity and flattening on vitronectin matrix, which can be important for their distribution in the postinfarction myocardium and realization of the reparative functions.


Assuntos
Adesão Celular/fisiologia , Miocárdio/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Células-Tronco/fisiologia , Vitronectina/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Miocárdio/citologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
18.
Ter Arkh ; 91(9): 4-9, 2019 Sep 15.
Artigo em Russo | MEDLINE | ID: mdl-32598807

RESUMO

One of the most outstanding scientific achievements in the thrombolysis is the development and administration of fibrinolysin - the first Soviet drug that lyses blood clots. Intracoronary administration of fibrinolysin reduced the mortality of patients with myocardial infarction by almost 20%. For his work in this field Yevgeny Chazov was awarded the Lenin Prize in 1982. Over the next decades, under his leadership, the Cardiology Center established scientific and clinical laboratories that created new generations of drugs based on fibrinolytics for treating patients with myocardial infarction, restoration of blood flow in ischemic tissue, and also studying the mechanisms of remodeling of blood vessels involving the fibrinolysis system. It have been found new mechanisms of regulation of the navigation of blood vessels and nerves growth, tumor growth and its metastasis with the participation of the fibrinolysis system proteins. The review reports the role of the fibrinolysis system in the thrombolysis, blood vessels growth and remodeling, neurogenesis, carcinogenesis and fibrosis. The article is dedicated to the 90th anniversary of academician E.I. Chazov.


Assuntos
Fibrinólise , Terapia Trombolítica , Carcinogênese , Fibrose , Humanos , Neurogênese
19.
J Biol Chem ; 292(7): 2741-2753, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27986809

RESUMO

Axonal injury is a common cause of neurological dysfunction. Unfortunately, in contrast to axons from the peripheral nervous system, the limited capacity of regeneration of central nervous system (CNS) axons is a major obstacle for functional recovery in patients suffering neurological diseases that involve the subcortical white matter. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to the urokinase-type plasminogen activator receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface. uPAR expression increases after an injury, and signaling through uPAR promotes tissue remodeling. However, it is yet unknown whether uPA binding to uPAR has an effect on axonal recovery in the CNS. Here, we used in vitro and in vivo models of CNS axonal injury to test the hypothesis that uPA binding to uPAR promotes axonal regeneration in the CNS. We found that newly formed growth cones from axons re-emerging from an axonal injury express uPAR and that binding of uPA to this uPAR promotes axonal recovery by a mechanism that does not require the generation of plasmin. Our data indicate that the binding of recombinant uPA or endogenous uPA to uPAR induces membrane recruitment and activation of ß1 integrin via the low density lipoprotein receptor-related protein-1 (LRP1), which leads to activation of the Rho family small GTPase Rac1 and Rac1-induced axonal regeneration. Our results show that the uPA/uPAR/LRP1 system is a potential target for the development of therapeutic strategies to promote axonal recovery following a CNS injury.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/metabolismo , Regeneração Nervosa , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Humanos , Integrina beta1/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Ligação Proteica
20.
J Biol Chem ; 292(50): 20528-20543, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972182

RESUMO

Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.


Assuntos
Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Angiomiolipoma/tratamento farmacológico , Angiomiolipoma/genética , Angiomiolipoma/metabolismo , Angiomiolipoma/patologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Interferência de RNA , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Carga Tumoral/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA