Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Hum Genet ; 111(6): 1018-1034, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749427

RESUMO

Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.


Assuntos
Vírus da Hepatite B , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Vírus da Hepatite B/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Genoma Viral , Antígenos de Superfície da Hepatite B/genética , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Genômica/métodos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo
2.
EMBO J ; 40(16): e106540, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34121210

RESUMO

Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.


Assuntos
Alarminas/genética , Calgranulina B/genética , HIV-1/fisiologia , Células de Langerhans/virologia , Vírus da Leucemia Murina de Moloney/fisiologia , Infecções por Retroviridae/prevenção & controle , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Cricetulus , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Células de Langerhans/imunologia , Leucemia Experimental/prevenção & controle , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Transcrição Reversa , Fator de Crescimento Transformador beta/imunologia , Infecções Tumorais por Vírus/prevenção & controle , Replicação Viral
3.
Eur J Immunol ; 51(3): 742-745, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33125710

RESUMO

Using a specific antibody, we found that expression of the viral restriction factor IFITM3 differs across cell types within the immune compartment with higher expression in myeloid rather than lymphoid cells. IFITM3 expression was increased following IFN stimulation, mostly type I, in immune cells, with the exception of T cells.


Assuntos
Antivirais/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Linfócitos/metabolismo
4.
J Virol ; 95(23): e0007021, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495702

RESUMO

Endogenous retroviruses (ERVs) are increasingly recognized for biological impacts on host cell function and susceptibility to infectious agents, particularly in relation to interactions with exogenous retroviral progenitors (XRVs). ERVs can simultaneously promote and restrict XRV infections using mechanisms that are virus and host specific. The majority of endogenous-exogenous retroviral interactions have been evaluated in experimental mouse or chicken systems, which are limited in their ability to extend findings to naturally infected outbred animals. Feline leukemia virus (FeLV) has a relatively well-characterized endogenous retrovirus with a coexisting virulent exogenous counterpart and is endemic worldwide in domestic cats. We have previously documented an association between endogenous FeLV (enFeLV) long terminal repeat (LTR) copy number and abrogated exogenous FeLV in naturally infected cats and experimental infections in tissue culture. Analyses described here examine limited FeLV replication in experimentally infected peripheral blood mononuclear cells, which correlates with higher enFeLV transcripts in these cells compared to fibroblasts. We further examine NCBI Sequence Read Archive RNA transcripts to evaluate enFeLV transcripts and RNA interference (RNAi) precursors. We find that lymphoid-derived tissues, which are experimentally less permissive to exogenous FeLV infection, transcribe higher levels of enFeLV under basal conditions. Transcription of enFeLV-LTR segments is significantly greater than that of other enFeLV genes. We documented transcription of a 21-nucleotide (nt) microRNA (miRNA) just 3' to the enFeLV 5'-LTR in the feline miRNAome of all data sets evaluated (n = 27). Our findings point to important biological functions of enFeLV transcription linked to solo LTRs distributed within the domestic cat genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. IMPORTANCE Endogenous retroviruses (ERVs) are increasingly implicated in host cellular processes and susceptibility to infectious agents, specifically regarding interactions with exogenous retroviral progenitors (XRVs). Exogenous feline leukemia virus (FeLV) and its endogenous counterpart (enFeLV) represent a well-characterized, naturally occurring XRV-ERV dyad. We have previously documented an abrogated FeLV infection in both naturally infected cats and experimental fibroblast infections that harbor higher enFeLV proviral loads. Using an in silico approach, we provide evidence of miRNA transcription that is produced in tissues that are most important for FeLV infection, replication, and transmission. Our findings point to important biological functions of enFeLV transcription linked to solo-LTRs distributed within the feline genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. This body of work provides additional evidence of RNA interference (RNAi) as a mechanism of viral interference and is a demonstration of ERV exaptation by the host to defend against related XRVs.


Assuntos
Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/metabolismo , Leucemia Felina/virologia , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , Animais , Gatos/genética , Retrovirus Endógenos , Fibroblastos , Leucócitos Mononucleares , Tecido Linfoide , Camundongos , MicroRNAs , RNA Interferente Pequeno/genética , Sequências Repetidas Terminais , Transcriptoma , Replicação Viral
5.
J Biol Chem ; 295(6): 1575-1586, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914403

RESUMO

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-ß, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-ß mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.


Assuntos
Imunidade Inata , Monócitos/imunologia , Proteína 1 com Domínio SAM e Domínio HD/imunologia , Núcleo Celular/imunologia , Humanos , Infecções por Respirovirus/imunologia , Proteína 1 com Domínio SAM e Domínio HD/análise , Vírus Sendai/imunologia , Células THP-1 , Células U937
6.
J Biol Chem ; 295(13): 4252-4264, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32075911

RESUMO

SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.


Assuntos
HIV/genética , Lentivirus/genética , Transcrição Reversa/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Gatos , Bovinos , Células HEK293 , HIV/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Lentivirus/patogenicidade , Células Mieloides/virologia , Domínios Proteicos/genética , Proteína 1 com Domínio SAM e Domínio HD/química , Linfócitos T/virologia , Replicação Viral/genética
7.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801860

RESUMO

Merkel cell polyomavirus (MCPyV) is the major cause for Merkel cell carcinoma (MCC), a rare but highly aggressive skin cancer predominantly found in elderly and immunosuppressed patients. The early viral gene products large T-antigen (LT) and small T-antigen (sT) are important for efficient viral DNA replication, and both contribute to transformation processes. These functions are executed mainly through interactions with host factors. Here, we identify the cellular ubiquitin-specific processing protease 7 (Usp7) as a new interaction partner of the MCPyV LT. Using glutathione S-transferase pulldown experiments, we show that MCPyV LT directly binds to Usp7 and that N- as well as C-terminal regions of LT bind to the TRAF (tumor necrosis factor receptor-associated) domain of Usp7. We demonstrate that endogenous Usp7 coprecipitates with MCPyV T-antigens and relocalizes to viral DNA replication centers in cells actively replicating MCPyV genomes. We show that Usp7 does not alter ubiquitination levels of the T-antigens; however, Usp7 binding increases the binding affinity of LT to the origin of replication, thereby negatively regulating viral DNA replication. Together, these data identify Usp7 as a restriction factor of MCPyV replication. In contrast to other DNA viruses, Usp7 does not affect MCPyV gene expression via its ubiquitination activity but influences MCPyV DNA replication solely via a novel mechanism that modulates binding of LT to viral DNA.IMPORTANCE MCPyV is the only human polyomavirus that is associated with cancer; the majority of Merkel cell cancers have a viral etiology. While much emphasis was placed on investigations to understand the transformation process by MCPyV oncoproteins and cellular factors, we have only limited knowledge of cellular factors participating in the MCPyV life cycle. Here, we describe Usp7, a cellular deubiquitination enzyme, as a new factor involved in MCPyV replication. Usp7 is known in the context of large DNA tumor viruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus, to restrict viral replication. Similar to EBV, where Usp7 binding to EBNA1 increases EBNA1 binding affinity to viral DNA, we find MCPyV LT binding to the origin of replication to be increased in the presence of Usp7, resulting in restriction of viral DNA replication. However, Usp7-induced restriction of MCPyV replication is independent of its enzymatic activity, thereby constituting a novel mechanism of Usp7-induced restriction of viral replication.


Assuntos
Antígenos Virais de Tumores/metabolismo , DNA Viral/metabolismo , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Replicação Viral/fisiologia , Carcinoma de Célula de Merkel/virologia , Linhagem Celular , Proliferação de Células , Células HEK293 , Humanos , Poliomavírus das Células de Merkel/crescimento & desenvolvimento , Infecções por Polyomavirus/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Infecções Tumorais por Vírus/virologia
8.
Med Microbiol Immunol ; 208(3-4): 513-529, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30879196

RESUMO

SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.


Assuntos
Vírus de DNA/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Fatores Imunológicos/metabolismo , Lentivirus/imunologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo
9.
Retrovirology ; 14(1): 34, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569216

RESUMO

BACKGROUND: Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. RESULTS: In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. CONCLUSIONS: We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.


Assuntos
Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/virologia , Lentivirus/genética , Animais , Proteínas do Capsídeo/genética , Proteínas de Transporte/genética , Linhagem Celular , Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lentivirus/fisiologia , Leupeptinas/farmacologia , Camundongos , Transcrição Reversa/efeitos dos fármacos , Transdução Genética , Integração Viral/efeitos dos fármacos , Internalização do Vírus
10.
Pathogens ; 13(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535531

RESUMO

APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.

11.
Viruses ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399958

RESUMO

The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.


Assuntos
Viroses , Vírus , Humanos , Viroses/genética , Replicação Viral , Vírus/genética , RNA Viral , Epigênese Genética
12.
Viruses ; 15(2)2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36851520

RESUMO

Rift Valley Fever virus (RVFV) and Toscana virus (TOSV) are two pathogenic arthropod-borne viruses responsible for zoonotic infections in both humans and animals; as such, they represent a growing threat to public and veterinary health. Interferon-induced transmembrane (IFITM) proteins are broad inhibitors of a large panel of viruses belonging to various families and genera. However, little is known on the interplay between RVFV, TOSV, and the IFITM proteins derived from their naturally infected host species. In this study, we investigated the ability of human, bovine, and camel IFITMs to restrict RVFV and TOSV infection. Our results indicated that TOSV was extremely sensitive to inhibition by all the animal IFITMs tested, while RVFV was inhibited by human IFITM-2 and IFITM-3, but not IFITM-1, and exhibited a more heterogeneous resistance phenotype towards the individual bovine and camel IFITMs tested. Overall, our findings shed some light on the complex and differential interplay between two zoonotic viruses and IFITMs from their naturally infected animal species.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vírus da Febre do Flebótomo Napolitano , Humanos , Animais , Bovinos , Camelus , Zoonoses , Especificidade de Hospedeiro , Interferons , Proteínas de Membrana
13.
Hum Gene Ther ; 34(17-18): 836-852, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672519

RESUMO

As the clinical experience in adeno-associated viral (AAV) vector-based gene therapies is expanding, the necessity to better understand and control the host immune responses is also increasing. Immunogenicity of AAV vectors in humans has been linked to several limitations of the platform, including lack of efficacy due to antibody-mediated neutralization, tissue inflammation, loss of transgene expression, and in some cases, complement activation and acute toxicities. Nevertheless, significant knowledge gaps remain in our understanding of the mechanisms of immune responses to AAV gene therapies, further hampered by the failure of preclinical animal models to recapitulate clinical findings. In this review, we focus on the current knowledge regarding immune responses, spanning from innate immunity to humoral and adaptive responses, triggered by AAV vectors and how they can be mitigated for safer, durable, and more effective gene therapies.


Assuntos
Ativação do Complemento , Imunidade Inata , Animais , Humanos , Terapia Genética , Inflamação , Modelos Animais
14.
Life (Basel) ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36836754

RESUMO

Mother-to-children transmission (MTCT) is the main infection route for HIV-1 in children, and may occur during pregnancy, delivery, and/or postpartum. It is a multifactorial phenomenon, where genetic variants play an important role. This study aims at analyzing the influence of clinical epidemiological characteristics and a variant (rs12252) in interferon-induced transmembrane protein 3 (IFITM-3), a gene encoding an important viral restriction factor, on the susceptibility to HIV-1 mother-to-children transmission (MTCT). A case-control study was performed on 209 HIV-1-infected mothers and their exposed infected (87) and uninfected (122) children from Pernambuco, Brazil. Clinical-epidemiological characteristics are significantly associated with MTCT susceptibility. Transmitter mothers have a significantly lower age at delivery, late diagnosis, deficiency in ART use (pregnancy and delivery), and detectable viral load in the third trimester of pregnancy compared with non-transmitter mothers. Infected children show late diagnosis, vaginal delivery frequency, and tend to breastfeed, differing significantly from uninfected children. The IFITM-3 rs12252-C allele and TC/CC genotypes (dominant model) are significantly more frequent among infected than uninfected children, but the statistical significance does not remain when adjusted for clinical factors. No significant differences are observed between transmitter and non-transmitter mothers in relation to the IFITM-3 variant.

15.
Cancer Lett ; 496: 104-116, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038491

RESUMO

Cervical cancer is one of the foremost common cancers in women. Human papillomavirus (HPV) infection remains a major risk factor of cervical cancer. In addition, numerous other genetic and epigenetic factors also are involved in the underlying pathogenesis of cervical cancer. Recently, it has been reported that apolipoprotein B mRNA editing enzyme catalytic polypeptide like (APOBEC), DNA-editing protein plays an important role in the molecular pathogenesis of cancer. Particularly, the APOBEC3 family was shown to induce tumor mutations by aberrant DNA editing mechanism. In general, APOBEC3 enzymes play a pivotal role in the deamination of cytidine to uridine in DNA and RNA to control diverse biological processes such as regulation of protein expression, innate immunity, and embryonic development. Innate antiviral activity of the APOBEC3 family members restrict retroviruses, endogenous retro-element, and DNA viruses including the HPV that is the leading risk factor for cervical cancer. This review briefly describes the pathogenesis of cervical cancer and discusses in detail the recent findings on the role of APOBEC in the molecular pathogenesis of cervical cancer.


Assuntos
Desaminases APOBEC/metabolismo , Imunidade Inata/imunologia , Neoplasias do Colo do Útero/patologia , Animais , Feminino , Humanos , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/imunologia
16.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 8): 230-237, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341188

RESUMO

The TLDc [Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic] domain is associated with oxidation-resistance related functions and is well conserved among eukaryotes. Seven proteins possess a TLDc domain in humans, notably proteins belonging to the oxidation resistance protein (OXR), nuclear receptor coactivator 7 (NCOA7) and TBC1 domain family member 24 (TBC1D24) families. Although the mechanism is unknown, a protective role of TLDc proteins against oxidative stress, notably in the brain, has been demonstrated. Neurobiological disorders caused by mutations in the TLDc domain have also been reported. The human NCOA7 gene encodes several mRNA isoforms; among these, isoform 4, named NCOA7-AS, is up-regulated by type 1 interferon in response to viral infection. NCOA7 and NCOA7-AS both interact with several subunits of the vacuolar proton pump V-ATPase, which leads to increased acidification of the endolysosomal system and consequently impairs infection by viruses that enter their host cells through the endosomal pathway, such as influenza A virus and hepatitis C virus. Similarly to full-length NCOA7, NCOA7-AS possesses a TLDc domain in its C-terminus. Structures of TLDc domains have been reported from zebrafish and fly but not from humans. Here, the expression, purification and crystallization of the TLDc domain from NCOA7 and NCOA7-AS is reported. The crystal structure solved at 1.8 Šresolution is compared with previously solved three-dimensional structures of TLDc domains.


Assuntos
Cristalografia por Raios X/métodos , Mutação/genética , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/genética , Sequência de Aminoácidos , Animais , Cristalização , Drosophila melanogaster , Humanos , Estrutura Secundária de Proteína
17.
Viruses ; 13(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802945

RESUMO

Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.


Assuntos
Desaminases APOBEC , Neoplasias/metabolismo , Viroses , Desaminases APOBEC/química , Desaminases APOBEC/imunologia , Humanos , Imunidade Inata , Multimerização Proteica , Relação Estrutura-Atividade , Viroses/imunologia
18.
Viruses ; 13(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803830

RESUMO

Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.


Assuntos
Desaminases APOBEC/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteínas dos Retroviridae/metabolismo , Spumavirus/genética , Spumavirus/fisiologia , Animais , Linhagem Celular , Humanos , Mutação , Primatas/virologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Proteínas dos Retroviridae/classificação , Proteínas dos Retroviridae/genética , Spumavirus/imunologia
19.
Virol Sin ; 36(5): 981-996, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33751400

RESUMO

Human SAMHD1 (hSAM) restricts lentiviruses at the reverse transcription step through its dNTP triphosphohydrolase (dNTPase) activity. Besides humans, several mammalian species such as cats and cows that carry their own lentiviruses also express SAMHD1. However, the intracellular distribution of feline and bovine SAMHD1 (fSAM and bSAM) and its significance in their lentiviral restriction function is not known. Here, we demonstrated that fSAM and bSAM were both predominantly localized to the nucleus and nuclear localization signal (11KRPR14)-deleted fSAM and bSAM relocalized to the cytoplasm. Both cytoplasmic fSAM and bSAM retained the antiviral function against different lentiviruses and cytoplasmic fSAM could restrict Vpx-encoding SIV and HIV-2 more efficiently than its wild-type (WT) protein as cytoplasmic hSAM. Further investigation revealed that cytoplasmic fSAM was resistant to Vpx-induced degradation like cytoplasmic hSAM, while cytoplasmic bSAM was not, but they all demonstrated the same in vitro dNTPase activity and all could interact with Vpx as their WT proteins, indicating that cytoplasmic hSAM and fSAM can suppress more SIV and HIV-2 by being less sensitive to Vpx-mediated degradation. Our results suggested that fSAM- and bSAM-mediated lentiviral restriction does not require their nuclear localization and that fSAM shares more common features with hSAM. These findings may provide insights for the establishment of alternative animal models to study SAMHD1 in vivo.


Assuntos
HIV-2 , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Animais , Gatos , Bovinos , Núcleo Celular , HIV-2/genética , Transcrição Reversa , Vírus da Imunodeficiência Símia , Proteínas Virais Reguladoras e Acessórias/genética
20.
Virology ; 540: 17-22, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731106

RESUMO

Abortive infection of macrophages serves as a "dead end" for most seasonal influenza A virus (IAV) strains, and it is likely to contribute to effective host defence. Interferon (IFN)-induced transmembrane protein 3 (IFITM3) restricts the early stages of IAV replication in epithelial cells, but IFITM3 restriction of IAV replication in macrophages has not been previously investigated. Herein, macrophages isolated from IFITM3-deficient mice were more susceptible to initial IAV infection, but late-stage viral replication was still controlled through abortive infection. Strikingly, IFNα/ß receptor (IFNAR)-deficient macrophages infected with IAV were not only more susceptible to initial infection, but these cells also supported productive viral replication. Significantly, we have established that abortive IAV infection in macrophages is controlled through a type I IFN-dependent mechanism, where late-stage IAV replication can proceed in the absence of type I IFN responses. These findings provide novel mechanistic insight into macrophage-specific processes that potently shut down IAV replication.


Assuntos
Vírus da Influenza A/fisiologia , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Replicação Viral , Animais , Linhagem Celular , Células Cultivadas , Suscetibilidade a Doenças , Expressão Gênica , Interações Hospedeiro-Patógeno , Vírus da Influenza A/efeitos dos fármacos , Interferon Tipo I/farmacologia , Macrófagos/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA