Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.962
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(4): 771-782.e11, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056341

RESUMO

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Assuntos
Carbono-Carbono Liases/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Carbono-Carbono Liases/química , Carbono-Carbono Liases/genética , Técnicas de Inativação de Genes , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Moleculares
2.
Proc Natl Acad Sci U S A ; 121(14): e2315568121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530900

RESUMO

Methanogenic archaea inhabiting anaerobic environments play a crucial role in the global biogeochemical material cycle. The most universal electrogenic reaction of their methane-producing energy metabolism is catalyzed by N    5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH), which couples the vectorial Na+ transport with a methyl transfer between the one-carbon carriers tetrahydromethanopterin and coenzyme M via a vitamin B12 derivative (cobamide) as prosthetic group. We present the 2.08 Šcryo-EM structure of Mtr(ABCDEFG)3 composed of the central Mtr(ABFG)3 stalk symmetrically flanked by three membrane-spanning MtrCDE globes. Tetraether glycolipids visible in the map fill gaps inside the multisubunit complex. Putative coenzyme M and Na+ were identified inside or in a side-pocket of a cytoplasmic cavity formed within MtrCDE. Its bottom marks the gate of the transmembrane pore occluded in the cryo-EM map. By integrating Alphafold2 information, functionally competent MtrA-MtrH and MtrA-MtrCDE subcomplexes could be modeled and thus the methyl-tetrahydromethanopterin demethylation and coenzyme M methylation half-reactions structurally described. Methyl-transfer-driven Na+ transport is proposed to be based on a strong and weak complex between MtrCDE and MtrA carrying vitamin B12, the latter being placed at the entrance of the cytoplasmic MtrCDE cavity. Hypothetically, strongly attached methyl-cob(III)amide (His-on) carrying MtrA induces an inward-facing conformation, Na+ flux into the membrane protein center and finally coenzyme M methylation while the generated loosely attached (or detached) MtrA carrying cob(I)amide (His-off) induces an outward-facing conformation and an extracellular Na+ outflux. Methyl-cob(III)amide (His-on) is regenerated in the distant active site of the methyl-tetrahydromethanopterin binding MtrH implicating a large-scale shuttling movement of the vitamin B12-carrying domain.


Assuntos
Mesna , Metiltransferases , Mesna/metabolismo , Metiltransferases/metabolismo , Metilação , Vitamina B 12/metabolismo , Metano/metabolismo , Amidas , Vitaminas
3.
J Biol Chem ; 300(5): 107289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636663

RESUMO

Vitamin B12 (cobalamin or Cbl) functions as a cofactor in two important enzymatic processes in human cells, and life is not sustainable without it. B12 is obtained from food and travels from the stomach, through the intestine, and into the bloodstream by three B12-transporting proteins: salivary haptocorrin (HC), gastric intrinsic factor, and transcobalamin (TC), which all bind B12 with high affinity and require proteolytic degradation to liberate Cbl. After intracellular delivery of dietary B12, Cbl in the aquo/hydroxocobalamin form can coordinate various nucleophiles, for example, GSH, giving rise to glutathionylcobalamin (GSCbl), a naturally occurring form of vitamin B12. Currently, there is no data showing whether GSCbl is recognized and transported in the human body. Our crystallographic data shows for the first time the complex between a vitamin B12 transporter and GSCbl, which compared to aquo/hydroxocobalamin, binds TC equally well. Furthermore, sequence analysis and structural comparisons show that TC recognizes and transports GSCbl and that the residues involved are conserved among TCs from different organisms. Interestingly, haptocorrin and intrinsic factor are not structurally tailored to bind GSCbl. This study provides new insights into the interactions between TC and Cbl.


Assuntos
Glutationa , Ratos , Transcobalaminas , Vitamina B 12 , Animais , Cristalografia por Raios X , Glutationa/metabolismo , Glutationa/análogos & derivados , Glutationa/química , Ligação Proteica , Transcobalaminas/metabolismo , Transcobalaminas/química , Vitamina B 12/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/química
4.
J Biol Chem ; 300(9): 107662, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128713

RESUMO

Propionic acid links the oxidation of branched-chain amino acids and odd-chain fatty acids to the TCA cycle. Gut microbes ferment complex fiber remnants, generating high concentrations of short chain fatty acids, acetate, propionate and butyrate, which are shared with the host as fuel sources. Analysis of vitamin B12-dependent propionate utilization in skin biopsy samples has been used to characterize and diagnose underlying inborn errors of cobalamin (or B12) metabolism. In these cells, the B12-dependent enzyme, methylmalonyl-CoA mutase (MMUT), plays a central role in funneling propionate to the TCA cycle intermediate, succinate. Our understanding of the fate of propionate in other cell types, specifically, the involvement of the ß-oxidation-like and methylcitrate pathways, is limited. In this study, we have used [14C]-propionate tracing in combination with genetic ablation or inhibition of MMUT, to reveal the differential utilization of the B12-dependent and independent pathways for propionate metabolism in fibroblast versus colon cell lines. We demonstrate that itaconate can be used as a tool to investigate MMUT-dependent propionate metabolism in cultured cell lines. While MMUT gates the entry of propionate carbons into the TCA cycle in fibroblasts, colon-derived cell lines exhibit a quantitatively significant or exclusive reliance on the ß-oxidation-like pathway. Lipidomics and metabolomics analyses reveal that propionate elicits pleiotropic changes, including an increase in odd-chain glycerophospholipids, and perturbations in the purine nucleotide cycle and arginine/nitric oxide metabolism. The metabolic rationale and the regulatory mechanisms underlying the differential reliance on propionate utilization pathways at a cellular, and possibly tissue level, warrant further elucidation.

5.
Cell Mol Life Sci ; 81(1): 397, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261351

RESUMO

Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.


Assuntos
Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Fator 1 Induzível por Hipóxia , Mucosa Intestinal , Transdução de Sinais , Vitamina B 12 , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina B 12/farmacologia , Vitamina B 12/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Fator 1 Induzível por Hipóxia/metabolismo , Colite/metabolismo , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Colite/tratamento farmacológico , Disbiose/microbiologia , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Drosophila/metabolismo
6.
Crit Rev Biochem Mol Biol ; 57(2): 133-155, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608838

RESUMO

Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Sirtuína 1 , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Ácido Fólico , Mamíferos/metabolismo , Metionina , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vitamina B 12/genética , Vitamina B 12/metabolismo , Vitaminas
7.
Curr Issues Mol Biol ; 46(8): 9082-9092, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39194754

RESUMO

Skin radiance is crucial for enhancing facial attractiveness and is negatively affected by factors like hyperpigmentation and aging-related changes. Current treatments often lack comprehensive solutions for improving skin radiance. This study aimed to develop a cosmetic formula that enhances skin radiance by reducing hyperpigmentation and improving skin regeneration by targeting specific receptors-the endothelin receptor type B (EDNRB) for hyperpigmentation and the adiponectin receptor 1 (ADIPOR1) for sagging and wrinkles. To achieve this, we used artificial intelligence technologies to screen and select ingredients with an affinity for EDNRB and ADIPOR1. Vitamin B12 (VitB12) was identified as a molecule that targets EDNRB, which is involved in melanogenesis. Adenosine triphosphate (ATP) targets ADIPOR1, which is associated with skin regeneration. VitB12 successfully inhibited intracellular calcium elevation and melanogenesis induced by endothelin-1. In contrast, ATP increased the mRNA expression of collagen and elastin and promoted wound healing. Moreover, the VitB12 and ATP complex significantly increased the expression of hyaluronan synthases, which are crucial for skin hydration. Furthermore, in human participants, the application of the VitB12 and ATP complex to one-half of the face significantly improved skin radiance, elasticity, and texture. Our findings provide valuable insights for the development of skincare formulations.

8.
Br J Haematol ; 204(3): 1047-1053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087805

RESUMO

Sickle cell disease (SCD) is associated with high rates of undernutrition and stunting. Undernutrition in combination with chronic haemolysis may lead to deficiencies in micronutrients necessary for erythropoiesis. Here we examined selected levels of ferritin, vitamins B2 , B6 , B9 and B12 , and vitamin C that were measured in blood samples from 820 SCD patients from Tanzania with no history of hospital admission, infections or painful episodes in the previous 30 days. We studied children (0-8 years), early adolescents (9-14 years), late adolescents (15-17 years) and adults (≥18 years). Severely low levels of vitamin B12 were observed across the four age groups. Despite the lowered vitamin B12 concentrations, total homocysteine concentrations were normal across both genders in all age groups. We found no significant gender-related differences between the other measured micronutrients. In this large SCD population, spanning the whole life cycle, a low level of vitamin B12 was consistently found across both genders and all age groups. Given the pivotal role of vitamin B12 in cellular metabolism, particularly in erythropoiesis, more studies are required to unravel how to better detect clinically relevant vitamin B12 deficiency among SCD patients, and thus to identify more precisely those who need supplementation of vitamin B12 .


Assuntos
Anemia Falciforme , Desnutrição , Adulto , Criança , Adolescente , Humanos , Masculino , Feminino , Vitamina B 12 , Ácido Fólico , Tanzânia , Estudos de Coortes , Vitaminas , Micronutrientes
9.
Br J Haematol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128484

RESUMO

The case report by Dwyre et al. shows that vitamin B12 deficiency may be misdiagnosed as acute thrombotic thrombocytopenic purpura. Together with similar observations, this underlines that acquired vitamin B12 deficiency-besides the inherited disorder of intracellular cobalamin metabolism, cbl C disease-should be listed as a separate entity of the thrombotic microangiopathies. Commentary on: Dwyre et al. Microangiopathic thrombocytopenia caused by vitamin B12 deficiency responding to plasma exchange. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19625.

10.
Br J Haematol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030927

RESUMO

A young adult African American female presented with normocytic microangiopathic haemolytic anaemia, elevated lactate dehydrogenase and thrombocytopenia. The patient responded to therapeutic plasma exchanges (TPE) for presumed thrombotic microangiopathy caused by thrombotic thrombocytopenic purpura (TTP). After relapsing, the patient was found to have pancytopenia, megaloblastic bone marrow and low vitamin B12 consistent with pernicious anaemia, which improved with intramuscular B12 and discontinuation of TPE. B12-deficient macrocytosis was not seen at presentation due to concomitant alpha-thalassaemia. Initial clinical/laboratory improvement is attributed to B12 present in TPE plasma. B12 deficiency can mimic TTP. Vigilance is needed regarding atypical presentations of pernicious anaemia.

11.
BMC Med ; 22(1): 330, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134986

RESUMO

BACKGROUND: Data have shown that vitamin B12 has immunomodulatory effects via different pathways, which could influence the pathophysiology of sepsis. The objective of this study was to investigate whether vitamin B12 levels, assessed by the measurement of holotranscobalamin (HTC), total vitamin B12 (B12), and methylmalonic acid (MMA, which accumulates in case of B12 deficiency), are associated with the development of sepsis in patients with onset of bacterial infection. METHODS: This was a single-center, prospective observational pilot study. Adult patients who presented to the emergency department with bacterial infection confirmed by a positive microbiological culture result were included in the study and followed up for 6 days to assess whether they developed sepsis or not. The primary objective was to compare HTC concentration in patients who developed sepsis to those who did not develop sepsis. Secondary objectives were the evaluation of B12 and MMA concentrations in those two groups. Multiple logistic regression models were used, with presence of sepsis as the outcome variable, and HTC, B12, and MMA concentrations as predictor variables, separately, and adjusted for potential confounders. RESULTS: From 2019 to 2022, 2131 patients were assessed for eligibility, of whom 100 met the inclusion criteria. One patient was excluded from the analysis due to missing data. Of the 99 patients, 29 developed sepsis. There was no evidence for an association between HTC or B12 concentration and the development of sepsis (OR 0.65, 95% CI 0.31-1.29, p = 0.232, OR 0.84, 95% CI 0.44-1.54, p = 0.584, respectively). There was an association between MMA concentration and the development of sepsis, with a positive effect, i.e. with increasing MMA, the odds for sepsis increased (OR 2.36, 95% CI 1.21-4.87, p = 0.014). This association remained significant when adjusted for confounders (OR 2.72, 95% CI 1.23-6.60, p = 0.018). CONCLUSIONS: Our study found an association between elevated MMA concentration and the development of sepsis. We did not find an association between HTC and B12 concentrations and the development of sepsis. Further, larger studies are warranted, as it could lead to interventional trials investigating whether B12 supplementation provides a clinical benefit to patients with infection or sepsis. TRIAL REGISTRATION: The study was registered on ClinicalTrials.gov under the identifier NCT04008446 on June 17, 2019.


Assuntos
Infecções Bacterianas , Sepse , Vitamina B 12 , Humanos , Estudos Prospectivos , Masculino , Feminino , Vitamina B 12/sangue , Pessoa de Meia-Idade , Idoso , Projetos Piloto , Ácido Metilmalônico/sangue , Adulto , Transcobalaminas/análise , Idoso de 80 Anos ou mais
12.
BMC Neurosci ; 25(1): 17, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475688

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that typically emerges early in childhood. This study aimed to explore the potential link between serum levels of vitamin B12 and homocysteine (Hcy) and the severity of ASD symptoms in children. METHODS: In this study, 50 children diagnosed with ASD comprised the observation group, while 50 healthy children constituted the control group. Serum levels of IL-17 A, Hcy, folate, and vitamin B12 were compared between the study group and control group, as well as among children with different degrees of ASD severity. The correlation between the Childhood Autism Rating Scale (CARS) score and serum levels of IL-17 A, Hcy, folate, and vitamin B12 was examined. Additionally, the relationship between serum IL-17 A and Hcy levels and their association with the severity ASD were explored. RESULTS: Compared to the control group, the observation group demonstrated elevated serum Hcy and IL-17 A levels alongside decreased folate and vitamin B12 levels. Individuals with severe ASD exhibited higher Hcy and IL-17 A levels but lower folate and vitamin B12 levels compared to those with mild to moderate ASD. The CARS score showed negative correlations with serum folate and vitamin B12 levels and positive correlations with serum IL-17 A and Hcy levels in ASD patients. Additionally, serum Hcy and IL-17 A levels were correlated with ASD severity. CONCLUSION: Children diagnosed with ASD presented with reduced serum vitamin B12 levels and increased levels of Hcy, potentially contributing to the onset and severity of ASD.


Assuntos
Transtorno Autístico , Homocisteína , Interleucina-17 , Criança , Humanos , Transtorno Autístico/sangue , Ácido Fólico/sangue , Interleucina-17/sangue , Vitamina B 12/sangue , Homocisteína/sangue
13.
Mol Genet Metab ; 142(1): 108345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387306

RESUMO

Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 µM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 µM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.


Assuntos
Proteínas de Transporte , Hidroxocobalamina , Fenótipo , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Hidroxocobalamina/administração & dosagem , Hidroxocobalamina/uso terapêutico , Masculino , Feminino , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/tratamento farmacológico , Deficiência de Vitamina B 12/sangue , Vitamina B 12/sangue , Pré-Escolar , Proteínas de Transporte/genética , Estudos Retrospectivos , Oxirredutases/genética , Criança , Ácido Metilmalônico/sangue , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Lactente , Mutação de Sentido Incorreto , Homozigoto , Heterozigoto , Homocisteína/sangue , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Adulto
14.
Cancer Invest ; 42(6): 515-526, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953509

RESUMO

Vitamin B12 (B12) is a molecule involved in several biological. Abnormally high levels are frequently found, but their causes can be multiple, and consequences have not been clearly elucidated. The objective of this review was to summarize the current evidence on the associations of elevated B12 and the development of cancer, and all-cause mortality in adults. Six references looking at mortality and seven looking at cancer risk were included. The evidence suggests an association between elevated B12 with a higher risk of cancer, with risk ratios ranging 1,88 to 5,9. There was less consistent evidence linking vitamin B12 and mortality.


Elevated B12 levels exceeding 1000 pg/L, if sustained and unexplainable, warrant a comprehensive individual assessment of each patient. This evaluation should encompass various potential factors contributing to the elevation, aiming to effectively guide the diagnostic process of neoplastic diseases.Clinical longitudinal observational studies have suggested a potential link between heightened B12 levels and the risks of cancer and mortality. Nonetheless, these studies have been retrospective cohort studies, and lack a defined threshold point of B12 levels.Studies have documented a positive correlation between elevated levels of B12 and the incidence of lung, pancreatic, and liver cancers, as well as certain hematological neoplasms, particularly those related to the myeloid lineage. Conversely, a consistent negative association has been observed in the context of breast cancer. Findings concerning neoplasms of the lower gastrointestinal tract and prostate display contradictory outcomes.The diagnostic significance of elevated B12 levels among patients already diagnosed with cancer remains uncertain and could potentially be linked to reverse causality.


Assuntos
Neoplasias , Vitamina B 12 , Humanos , Neoplasias/mortalidade , Neoplasias/etiologia , Fatores de Risco
15.
Chemistry ; 30(49): e202401800, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38922714

RESUMO

The btuB riboswitch is a regulatory RNA sequence controlling gene expression of the outer membrane B12 transport protein BtuB by specifically binding coenzyme B12 (AdoCbl) as its natural ligand. The B12 sensing riboswitch class is known to accept various B12 derivatives, leading to a division into two riboswitch subclasses, dependent on the size of the apical ligand. Here we focus on the role of side chains b and e on affinity and proper recognition, i. e. correct structural switch of the btuB RNA, which belongs to the AdoCbl-binding class I. Chemical modification of these side chains disturbs crucial hydrogen bonds and/or electrostatic interactions with the RNA, its effect on both affinity and switching being monitored by in-line probing. Chemical modifications at sidechain b of vitamin B12 show larger effects indicating crucial B12-RNA interactions. When introducing the same modification to AdoCbl the influence of any side-chain modification tested is reduced. This renders the impact of the adenosyl-ligand for B12-btuB riboswitch recognition clearly beyond the known role in affinity.


Assuntos
Corrinoides , Riboswitch , Vitamina B 12 , Vitamina B 12/química , Vitamina B 12/metabolismo , Corrinoides/química , Corrinoides/metabolismo , Ligantes , Ligação de Hidrogênio , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Cobamidas/química , Cobamidas/metabolismo , Sítios de Ligação , Proteínas de Membrana Transportadoras
16.
J Nutr ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122089

RESUMO

BACKGROUND: Previous studies reported that vitamin B-12 deficiency is associated with an increased risk of stroke. However, studies examining the association between excessive vitamin B-12 and stroke risk are limited. Our study aimed to investigate the relationship between excessive vitamin B-12 concentrations and risk of stroke and explore whether this association varies according to sex. METHODS: Utilizing the Korean Genome Epidemiology Study (KoGES) prospective cohort data, our primary exposure variables were vitamin B-12 plasma concentration and sex. The occurrence of stroke served as the main outcome of interest. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox regression analysis. An interaction analysis was conducted to assess the interaction effect of vitamin B-12 and sex on stroke incidence. RESULTS: Cox proportional logistic regression analysis, adjusting for confounders, showed that excessive vitamin B-12 did not significantly alter stroke risk (HR: 1.22, 95% CI: 0.82, 1.71) and revealed no significant sex-based differences in stroke risk (HR: 0.90, 95% CI: 0.75, 1.04). However, interaction analysis indicated that excessive vitamin B-12 was linked to a significant increase in stroke risk in males (HR: 1.81, 95% CI: 1.10, 2.99) but not in females (HR: 1.04, 95% CI: 0.66, 1.60), with statistically significant interaction effect (P < 0.01). CONCLUSIONS: Our study demonstrated that although excessive vitamin B-12 alone does not significantly increase stroke risk, it increases risk in males when considering the interaction with sex.

17.
J Nutr ; 154(9): 2680-2687, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936552

RESUMO

BACKGROUND: Infertility impacts 16% of North American couples, with male factor infertility contributing to ∼30% of cases. Reproductive hormones, especially testosterone, are essential for spermatogenesis. An age-independent population-level decline in testosterone concentrations over the past few decades has been proposed to be a consequence of diet and lifestyle changes. Vitamin B12 is present in the testes and has been suggested as an adjuvant nutritional therapy for male infertility due to its potential to improve sperm parameters. However, evidence examining the relationship between vitamin B12 and reproductive hormones is limited. OBJECTIVES: The objective was to cross-sectionally examine the relationship between serum vitamin B12 and male reproductive hormones (luteinizing hormone, follicular stimulating hormone, total testosterone, estradiol, and prolactin). METHODS: Men with infertility (n = 303) were recruited from Mount Sinai Hospital in Toronto, Canada. Serum was analyzed for vitamin B12 and reproductive hormones. Statistical analyses included nonparametric Spearman's rank correlation coefficient, linear regression, logistic regression, and effect modification by age and BMI linear regressions. RESULTS: An independent monotonic relationship between serum vitamin B12 and total testosterone (ρ = 0.19, P = 0.001) was observed. Serum vitamin B12 was linearly associated with total testosterone (unadjusted ß = 0.0007, P = 0.008 and adjusted ß = 0.0005, P = 0.03). Compared to individuals in the lowest tertile of serum vitamin B12, those in the middle tertile (adjusted odds ratio [OR] = 0.48; 95% confidence interval [CI]: 0.25, 0.93, P = 0.03) and the highest tertile (unadjusted OR = 0.41; 95% CI: 0.22, 0.77, P = 0.005 and adjusted OR = 0.44; 95% CI: 0.22, 0.87, P = 0.02) had reduced odds of testosterone deficiency. CONCLUSIONS: These findings suggest that among men with infertility, low serum vitamin B12 is associated with a higher risk of testosterone deficiency and impaired androgenic hormonal profiles that impact spermatogenesis and consequently, fertility.


Assuntos
Infertilidade Masculina , Testosterona , Vitamina B 12 , Humanos , Masculino , Vitamina B 12/sangue , Testosterona/sangue , Adulto , Infertilidade Masculina/sangue , Estudos Transversais , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Estradiol/sangue , Prolactina/sangue , Pessoa de Meia-Idade , Adulto Jovem
18.
J Nutr ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326632

RESUMO

BACKGROUND: Folate and vitamin B12 (B12) are cofactors in folate-mediated one-carbon metabolism (FOCM), a metabolic network that supports synthesis of nucleotides (including thymidylate, or dTMP) and methionine. FOCM impairments such as a deficiency or imbalance of cofactors can perturb dTMP synthesis, causing uracil misincorporation into DNA. OBJECTIVE: The purpose of this study was to determine how reduced expression of the B12-dependent enzyme methionine synthase (MTR) and excess dietary folic acid interact to affect folate distribution and markers of genome stability in mouse tissues. METHODS: Heterozygous Mtr knockout mice (Mtr+/-) model the FOCM-specific effects of B12 deficiency. Folate accumulation and vitamer distribution, genomic uracil levels, and phosphorylated histone γH2AX immunostaining were measured in male Mtr+/+ and Mtr+/- mice weaned to either a folate-sufficient control (C) diet (2 mg/kg folic acid) or a high folic acid (HFA) diet (20 mg/kg folic acid) for 7 weeks. RESULTS: Exposure to the HFA diet led to tissue-specific patterns of folate accumulation, with plasma, colon, kidney, and skeletal muscle exhibiting increased folate concentrations compared to control. Liver total folate did not differ. Though unmetabolized folic acid (UMFA) increased 10-fold in mouse plasma with HFA diet, UMFA accounted for less than 0.2% of total folate in liver and colon tissue. Exposure to HFA diet resulted in a shift in folate distribution in colon tissue with higher 5-methyl-THF and lower formyl-THF than in control mice. Mtr heterozygosity did not impact folate accumulation or distribution in any tissue. Mice on HFA diet exhibited higher uracil in genomic DNA and phosphorylated histone H2AX (γH2AX) foci in colon. Similar differences were not seen in liver. CONCLUSIONS: This study demonstrates that folic acid, even when consumed at high doses, does not meaningfully accumulate in mouse tissues, although high-dose folic acid shifts folate distribution and increases uracil accumulation in genomic DNA in colon tissue.

19.
BMC Cancer ; 24(1): 586, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741062

RESUMO

BACKGROUND: Observational study investigated the association between pernicious anemia (PA) and cancers. However, with the exception of gastric cancer, the results are mostly contradictory. The purpose of this study was to investigate the potential causal relationship between PA and cancers through bidirectional two-sample Mendelian randomized (MR) analysis. METHODS: The European sample FinnGen project provided the genetic summary data for PA and 20 site-specific cancers. This bidirectional two-sample MR design mainly used the inverse variance weighting (IVW) method to evaluate the causal relationship between PA and cancer risk. Benjamini-Hochberg correction was performed to reduce the bias caused by multiple tests. RESULTS: Our study shows that there was a causal relationship between PA and gastric cancer, prostate cancer, testicular cancer and malignant melanoma of skin, and there was a reverse causal relationship between prostate cancer or gastric cancer and PA (P < 0.05). After Benjamini-Hochberg correction test, there was still a causal correlation between PA and gastric or prostate cancer (P' < 0.05), while there was only an implied causal association between PA and testicular cancer and malignant melanoma of skin (P'> 0.05). There was still a reverse causal relationship between gastric cancer and PA (P'< 0.05), while prostate cancer shows an implied reverse causal relationship(P'> 0.05). In addition, MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy. CONCLUSIONS: PA may be genetically associated with testicular cancer, prostate cancer, gastric cancer, and malignant melanoma of skin.


Assuntos
Anemia Perniciosa , Análise da Randomização Mendeliana , Humanos , Anemia Perniciosa/genética , Anemia Perniciosa/complicações , Masculino , Neoplasias Gástricas/genética , Neoplasias/genética , Neoplasias Testiculares/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Feminino
20.
J Nutr ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299473

RESUMO

BACKGROUND: In China, the MTHFR 677T allele, unlike in most Western populations, is a rare genetic variant linked to various disorders. The contributing nutritional and genetic factors to this genetic risk remain unclear. OBJECTIVE: This study aimed to elucidate the interactions between genetic variations in total homocysteine (tHcy) pathway genes, serum tHcy levels, and nutritional factors in a hypertensive Chinese population. METHODS: This study analyzed 1,304 hypertensive Chinese adults aged 18 years and older enrolled in the China Precision Nutrition and Health KAP Real World Study (CPNAS). Serum levels of vitamin B12 and folate were measured using the magnetic microparticle chemiluminescence method, and tHcy levels were measured using Hcy Assay kits. Identification of the MTHFR C677T, MTHFR A1298C, and MTRR A66G polymorphisms was performed via time-of-flight nucleic spectrometry. RESULTS: Our findings revealed significant sex differences in tHcy levels, with males exhibiting higher tHcy levels than females (13.95 µmol/L vs. 11.15 µmol/L, p < 0.001). Individuals deficient in both vitamin B12 and folate had an increased risk of H-Hcy (57.4%). In contrast, the prevalence of H-Hcy was lower among those deficient in either vitamin B12 (31.1%) or folate (23.2%) alone. Significant associations were identified between the MTHFR C677T and A1298C polymorphisms and elevated serum tHcy levels, particularly in individuals homozygous for the T allele. Conversely, the MTRR A66G genotype did not show a significant correlation with tHcy levels. Optimal vitamin B12 concentrations significantly modulated the genotypic effect on tHcy levels, with individuals having adequate vitamin B12 and folate exhibiting low tHcy levels, even among high-risk genotypes (TT). CONCLUSIONS: Adequate levels of folate and vitamin B12 significantly reduce serum tHcy concentrations and mitigate the genotypic impact on tHcy levels, highlighting the potential for targeted nutritional interventions to manage cardiovascular risks associated with hyperhomocysteinemia. TRIAL REGISTRATION: The Clinical Study Protocol for the Trial (CPNAS) has been officially registered at ClinicalTrials.gov under the identification number ChiCTR2100051983.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA