Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Res ; 243: 117519, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972807

RESUMO

Nanotechnology offers a promising avenue to amplify the effectiveness and precision of using transgenic algae in managing WSSV in shrimp by possibly crafting nano-carriers for targeted therapeutic agent delivery or modifying algae cells at a molecular level. Leveraging the capabilities of nano-scale interventions, this study could explore innovative means to manipulate cellular processes, control biological interactions, and enhance treatment efficacy while minimizing undesirable impacts in aquatic environments. The White Spot Syndrome Virus (WSSV) is a double-stranded DNA virus with a tail and rod form that belongs to theNimaviridaefamily. There is no workable way to manage this illness at the moment. This research proposes a new model based on the Long Short-Term Memory (LSTM) and Spotted Hyena Optimizer (SHO) method to control the inner ear-oral infection, utilizing transgenic algae (Chlamydomonas reinhardtii). It is pretty tricky to modify the weight matrix in LSTM. The output will be more accurate if the weight of the neurons is exact. Histological examinations and nested polymerase chain reaction (PCR) testing were performed on the challenged shrimp every 4 h to assess the degree of white spot disease. The SHO-LSTM has shown the highest accuracy and Roc value (98.12% and 0.93, respectively) and the lowest error values (MSE = 0.182 and MAE = 0.48). The hybrid optimized model improves the overall inner ear-oral linked neurological diseases detection ratio. Additionally, with the slightest technical complexity, it effectively controls the forecast factors required to anticipate the ENT. Algal cells were found to be particularly well-suited for inner ear-oral infections, and shrimps fed a transgenic line had the best survival ratio in WSSV infection studies, with 87% of the shrimp surviving. This shows that using this line would effectively stop the spread of WSSV in shrimp populations.


Assuntos
Orelha Interna , Hyaenidae , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Penaeidae/genética , Memória de Curto Prazo
2.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373152

RESUMO

Foundation parents (FPs) play an irreplaceable role in maize breeding practices. Maize white spot (MWS) is an important disease in Southwest China that always seriously reduces production. However, knowledge about the genetic mechanism of MWS resistance is limited. In this paper, a panel of 143 elite lines were collected and genotyped by using the MaizeSNP50 chip with approximately 60,000 single nucleotide polymorphisms (SNPs) and evaluated for resistance to MWS among 3 environments, and a genome-wide association study (GWAS) and transcriptome analysis were integrated to reveal the function of the identity-by-descent (IBD) segments for MWS. The results showed that (1) 225 IBD segments were identified only in the FP QB512, 192 were found only in the FP QR273 and 197 were found only in the FP HCL645. (2) The GWAS results showed that 15 common quantitative trait nucleotides (QTNs) were associated with MWS. Interestingly, SYN10137 and PZA00131.14 were in the IBD segments of QB512, and the SYN10137-PZA00131.14 region existed in more than 58% of QR273's descendants. (3) By integrating the GWAS and transcriptome analysis, Zm00001d031875 was found to located in the region of SYN10137-PZA00131.14. These results provide some new insights for the detection of MWS's genetic variation mechanisms.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Estudo de Associação Genômica Ampla/métodos , Zea mays/genética , Melhoramento Vegetal , Genótipo , Fenótipo , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único
3.
Dis Aquat Organ ; 154: 59-68, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318385

RESUMO

Silver pomfret Pampus argenteus is a major cultivated marine fish species with a high market value. In summer 2021, Cryptocaryon irritans, a ciliate parasite, infected the cultured silver pomfret in aquaculture ponds in Ningbo, Zhejiang Province, China. The symptoms of infected fish include white spots on the skin and fins, increased body surface mucus, loss of appetite, irritability, and shedding of scales. After collecting white spots from moribund fish, the 18S ribosomal RNA sequence of the pathogen on the fish skin was amplified by PCR; phylogenetic analysis showed that it was closely related to C. irritans strains from Ningde, Fujian, China. Four groups of silver pomfret were tested in an artificial infection experiment over the course of 72 h, consisting of 3 infected groups (1600, 4000, and 8000 theronts fish-1) and 1 healthy group. White spots were observed on the skin and fins of the infected fish, but not on their gills. Samples were taken from the gills, liver, kidney, and spleen of both infected and healthy fish and were compared to evaluate any significant histopathological differences. As the dose of infection increased, symptoms became more pronounced. At 72 h, mortality rates were 8.3, 50, and 66.7% for the 3 different concentrations, respectively. The median lethal concentration was calculated to be 366 theronts g-1 at 72 h, 298 theronts g-1 at 84 h, and 219 theronts g-1 at 96 h. This study emphasizes the importance of developing early diagnosis methods and appropriate prevention strategies to decrease the impact of C. irritans infection in the silver pomfret aquaculture industry.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Perciformes , Animais , Filogenia , Perciformes/parasitologia , Infecções por Cilióforos/epidemiologia , Infecções por Cilióforos/veterinária , Peixes , Surtos de Doenças , Doenças dos Peixes/parasitologia
4.
Plant Dis ; 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678622

RESUMO

Maize (Zea mays L.) is one of the most important crops in China. Since 2020, a new leaf spot disease has occurred in southwest China in areas such as Yunnan, Sichuan and Hubei provinces. Typical symptoms appeared after tasseling. The spots are scattered on the leaf surface, round to oval in shape with diameter range 3-20 mm. Spots are initially water-soaked, gradually turning yellow or white. In 2021, diseased leaf samples with typical white spot were collected for pathogen isolation and identification in Qujing, Yunnan province. Four small pieces of leaf tissue (about 0.25 cm2 in area) were excised from the edge of the necrotic lesion of each plant, surface sterilized with 75% ethanol for 1 min, rinsed three times with sterile distilled water, and soaked in sterile distilled water for 5 min. The solution was plated on Luria Broth medium (LB) plate (Shin et al. 2022) . After incubation at 28°C for 24 h, round, smooth-edged yellow colonies appeared in the LB plate. The bacterium isolated was gram-negative, negative for oxidase, positive for peroxidase, indole, citrate (Wells et al. 1987). Three strains (PA21QJ01, PA21QJ02 and PA21QJ03) showed identical colony morphology. PA21QJ01 was used for further molecular analyses. DNA was extracted from fresh colonies cultured in LB(Shin et al. 2022), and the fragments at the 16S rDNA, gyrB and rpoB loci were amplified using primers 27F/1492R (Galkiewicz and Kellogg 2008), UP-1/UP-2r (Yamamoto and Harayama 1995) and rpoBCM81-F/rpoBCM32b-R (Brady et al. 2008), respectively. The sequences of fragments of 16S rDNA, gyrB and rpoB from isolate PA21QJ01 were was deposited in GenBank (accession number: OM184301.1, OM302500, OM302499). A search for homologous sequences using BLAST resulted in 99.9, 99.6 and 99.8% identity of 16S rDNA, gyrB and rpoB, respectively, with sequences from the NN08200 of Pantoea ananatis (GenBank accession numbers: MK415050.1 for 16S rDNA, CP035034.1 for gyrB and CP035034.1.1 for rpoB). Above molecular results indicated that PA21QJ01 isolated from maize white spot is P. ananatis. Pathogenicity tests were performed on tasseled plants of the suscptible maize variety Wugu1790. After culture in LB medium plate at 30°C for 12 h, the bacterial solution was used for inoculation at a concentration of 1 × 108 CFU ml-1. After 7 days of inoculation, the leaves of the plants appeared water-soaked. After 10 days, white spot developed with brown margin. In contrast, the control plants remained healthy and symptomless. The same P. ananatis was reisolated in the inoculated maize plants, fulfilled Koch's law. In the last decade, P. ananatis has been reported to cause maize white spot in South Africa, Mexico, Poland, Argentina, Brazil (Sauer et al. 2015), and Ecuador (Toaza et al.2021). It has caused crop diseases with other crops, such as onion, rice, pineapple, melon, and sorghum, and others (Sauer et al. 2015). It caused leaf blight and leaf steak in rice in China (Yu et al. 2021). This is the first report of maize white spot caused by P. ananatis in China. However, to our knowledge, this is the first report of maize white spot disease in China. Attentions should be paid to screening for disease-resistant resources and breeding disease-resistant hybrids. Reference: Wells, J. M. et al. 1987. Int. J. Syst. Bacteriol. 37:136-143. Shin, G. Y. et al. 2022. Plant Dis. Doi: 10.1094/PDIS-08-21-1810-SC. Brady, C., et al. 2008. Syst. Appl. Microbiol. 31:447. Galkiewicz, J. P., and Kellogg, C. A. 2008. APPL ENVIRON MICROB, 74.24: 7828-7831. Toaza, A. et al. 2021. Plant Dis. Doi:10.1094/PDIS-02-21-0298-PDN Yamamoto, S., and Harayama, S. 1995. APPL ENVIRON MICROB, 61:1104.L. Sauer, A. V. et al. 2015. Agronomy Science and Biotechnology. Doi:10.33158/ASB.2015v1i1p21 Yu et al. 2021. Plant Dis. Doi:10.1094/PDIS-05-21-0988-PDN.

5.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955424

RESUMO

The large yellow croaker (Larimichthys crocea) is one of the most economically valuable mariculture fish in China. Infection of Pseudomonas plecoglossicida can cause an outbreak of "internal organ white-spot disease", which seriously affects the aquaculture of the large yellow croaker. Ubiquitylation is closely related to the post-translation modification of proteins and plays a vital role in many hosts' immune defense pathways, while the E2-binding enzyme is a key factor in ubiquitination. Our previous genome-wide association study found that the ubiquitin-binding enzyme E2G1 (designed LcUbe2g1) was one of the candidate genes related to disease resistance in large yellow croaker. In this study, we analyzed the molecular characteristics, function, and immune mechanism of the LcUbe2g1. The full-length cDNA is 812 bp, with an open reading frame of 513 bp, encoding 170 amino acid residues. The results of the RT-qPCR and immunohistochemistry analysis revealed that its transcription and translation were significantly activated by the infection of P. plecoglossicida in large yellow croaker. Immunocytochemistry experiments verified the co-localization of LcUBE2G1 and the ubiquitin proteins in the head kidney cells of large yellow croaker. Through GST pull-down, we found that LcUBE2G1 interacted with NEDD8 to co-regulate the ubiquitination process. The above results indicate that LcUBE2G1 is essential in the regulation of ubiquitination against P. plecoglossicida infection in large yellow croaker, which lays a foundation for further study on the resistance mechanism of internal organ white-spot disease.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Resistência à Doença , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Estudo de Associação Genômica Ampla , Perciformes/genética , Perciformes/metabolismo , Filogenia , Pseudomonas , Ubiquitinas/metabolismo
6.
Fish Shellfish Immunol ; 119: 432-441, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688864

RESUMO

White spot syndrome virus (WSSV) is a fatal pathogen threatening global crustacean industry with no commercially available drugs to control. Herbal medicines have been widely used to treat a number of viral infections, which could offer a rich reserve for antiviral drug discovery. Here, we evaluated the inhibition activities of 30 herbal medicines against WSSV in Chinese mitten crab Eriocheir sinensis. A WSSV infection model in E. sinensis was firstly established in order to determine the antiviral effects of the plant extracts and to explore the potential action mechanisms. Results showed that the highest anti-WSSV activity was obtained by the treatment of Ophiopogon japonicus extract (93.03%, 100 mg/kg). O. japonicus treatment decreased viral loads in a dose-dependent manner and significantly improved the survival of WSSV-challenged crabs. O. japonicus reduced the expression of vital genes in viral life cycle in vivo, particularly for the immediate-early stage gene ie1. Further results indicated that O. japonicus could repress the JAK-STAT signaling pathway to block ie1 transcription. Moreover, O. japonicus could modulate certain immune genes such as the myosin, toll-like receptor, crustin, and prophenoloxidase in the interactions between WSSV and crabs. The up-regulated expression of pro-autophagic factors (Gabarap and Atg7) and elevated levels of antioxidant enzymes (SOD, CAT and GSH) suggested that O. japonicus may induce autophagy and attenuate WSSV-induced oxidative stress. Taken together, O. japonicus could inhibit WSSV proliferation and improve the survival of WSSV-challenged crabs. Thus, O. japonicus may have the potential to be developed as a preventive or therapeutic agent against WSSV, and its effective compounds merit further isolation and identification.


Assuntos
Ophiopogon , Vírus da Síndrome da Mancha Branca 1 , Animais , Antivirais , Proteínas de Artrópodes/genética , Proliferação de Células , China , Imunidade Inata
7.
Exp Parasitol ; 223: 108081, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33549536

RESUMO

Artificial breeding of small yellow croaker (Larimichthys polyactis) was recently achieved, providing a bright future for its commercial farming. In May 2019, a disease outbreak occurred among small yellow croakers in an aquaculture farm near Xiangshan Bay, charactering by white spots spotted on the surface of fish skin, gills and fins. The parasite was preliminarily identified as Cryptocaryon irritans based on morphological feature of the parasite and the symptoms on fish. However, the previously published specific primer pairs failed to confirm the existence of C. iriitans. Six nucleotides mismatches were discovered after mapping specific forward primer back to targeted gene. Therefore, an updated PCR specific primer was developed within the 9th highly variable region of 18S rRNA gene and conserved in all C. irritans sequences available in GenBank database. The specificity was verified in silico by Primer-BLAST against GenBank nucleotide. Laboratory cultured ciliates (Mesanophrys, Pseudokeronopsis and Uronema) as well as natural microbial community samples collected from sea water and river water was used as negative control to verify the specificity of the primer in situ. Besides, tank transfer method was used to evaluate the treatment of the parasite infection. By tank transfer method, 2.00 ± 0.61 out of 10 fish that already sever infected were successfully survived after 8 days treatment, meanwhile the control group died out at d 6. More loss to the treatment group during first five days was observed and may attribute to the combined effect from infection and stress the recent domesticated fish suffered during rotation. Therefore, tank transfer method was also effective to prevent small yellow croaker from further infection, however the loss of the small yellow croaker suffered from stress during rotation also needs to be carefully concerned. In conclusion, this study reported the first diagnose of C. irritans infection on small yellow croaker, provided updated specific primer to detect C. irritans infection on fish body and reported the effect of tank transfer on small yellow croaker treatment.


Assuntos
Infecções por Cilióforos/veterinária , Cilióforos/isolamento & purificação , Doenças dos Peixes/parasitologia , Perciformes/parasitologia , Nadadeiras de Animais/parasitologia , Nadadeiras de Animais/patologia , Animais , China/epidemiologia , Cilióforos/classificação , Cilióforos/genética , Infecções por Cilióforos/diagnóstico , Infecções por Cilióforos/epidemiologia , Infecções por Cilióforos/parasitologia , Surtos de Doenças/veterinária , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/terapia , Pesqueiros , Brânquias/parasitologia , Brânquias/patologia , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , Filogenia , RNA Ribossômico 18S/genética , Pele/parasitologia , Pele/patologia , Especificidade da Espécie
8.
Microb Pathog ; 147: 104369, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32634614

RESUMO

Francisella noatunensis subsp. orientalis (Fno) and Ichthyophthirius multifiliis (Ich) are deadly infectious pathogens in farmed tilapia, particularly during cold season when the water temperature drops to under 25 °C. We hypothesized that infection of the ectoparasite Ich might enhance susceptibility of hybrid red tilapia (Oreochromis sp.) to the facultative intracellular bacterium Fno. To prove the hypothesis, the experiment was designed as follows. Hybrid red tilapia naturally infected by Ich at 9 ± 6 theronts/fish gills and 4 ± 3 theronts/fish skin were distributed into 5 distinct groups exposed to different concentrations of Fno. In parallel, the same number of Ich-free tilapia were challenged to only Fno in the same manner. The results showed that cumulative mortality in the Fno single infection with 2.88 × 106 CFU mL-1 of water was 25 ± 7%, whereas 100% mortality was found in the coinfection treatment at dose of 1.93 × 105 CFU mL-1 of water. No mortality was observed in both control groups (Ich-infected and Ich-free fish). The coinfected fish revealed typical clinical signs and histopathological manifestations of francisellosis and ichthyophthiriasis. This study revealed synergistic effect of the Ich and Fno infection in hybrid red tilapia leading to the exacerbated mortality. Thus, farming management of fish to be free from the Ich ectoparasite might reduce risk of francisellosis and probably other bacterial diseases in farmed tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Francisella , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Infecções por Bactérias Gram-Negativas/veterinária
9.
Dis Aquat Organ ; 134(1): 43-55, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32132272

RESUMO

Ichthyophthirius multifiliis (Ich) is a globally distributed, freshwater parasitic ciliate that infects wild and cultured fishes. It has a direct, temperature-dependent life cycle that enables rapid multiplication when hosts are plentiful and environmental conditions are favorable. Accurate detection is central to the control of Ich infections and prevention of host mortality, particularly in wild systems where chemical treatments are not feasible. In the Klamath River, California, USA, the parasite threatens pre-spawning adult salmon Oncorhynchus spp. Currently, Ich is monitored by lethal sampling of fish hosts and visual quantification of parasite load. This method is insensitive to light infections, contributes to pre-spawn mortality of wild salmon, and does not allow for population-level disease risk assessments. We developed and applied an alternate sampling method based on molecular analysis of water samples for parasite DNA. We sequenced the small subunit ribosomal DNA (ssrDNA) of Ich isolates collected from the Klamath River, and then developed and validated a novel qPCR assay (SYTO9) that targets Ich ssrDNA. Our assay has better specificity than previously published assays, with strong linearity, efficiency and repeatability. The limit of detection was 50 copies of ssrDNA, equivalent to ~2 theronts in a sample. We found that Ich abundance in environmental water samples collected from the lower Klamath River from July to October, 2014 through 2016, related to observed parasite load on salmon sampled concurrently, indicating that the qPCR assay could be a useful monitoring tool for Ich in the Klamath River, with applications beyond the region.


Assuntos
Doenças dos Peixes , Reação em Cadeia da Polimerase em Tempo Real , Animais , California , Rios , Salmão
10.
Microb Pathog ; 123: 47-51, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29959037

RESUMO

Some evidence has demonstrated that Ichthyophthirius multifiliis, etiologic agent of "white spot disease", causes severe bioenergetics dysfunction in the spleen of naturally infected silver catfish (Rhamdia quelen), which contributes directly to disease pathogenesis. Recently, several studies have demonstrated the efficacy of Melaleuca alternifolia essential oil, popularly known as tea tree oil (TTO), in the treatment of freshwater fish naturally or experimentally infected with I. multifiliis. In this sense, the aim of this study was to evaluate whether TTO is capable of preventing or reducing splenic bioenergetics dysfunction in silver catfish naturally infected with I. multifiliis. Splenic cytosolic and mitochondrial creatine kinase (CK) and pyruvate kinase (PK) activities decreased in infected animals compared to uninfected animals, while adenylate kinase (AK) activity increased. Treatment with TTO was able to prevent the inhibition on splenic CK and PK activities but was not able to prevent the stimulation of AK activity. Based on this evidence, treatment with TTO prevents the impairment on energetic metabolism via improvement of enzymes belonging to the phosphotransfer network, such as CK and PK. In summary, this treatment can be considered an interesting approach to prevent the bioenergetics imbalance in spleen of silver catfish naturally infected with I. multifiliis.


Assuntos
Infecções por Cilióforos/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Doenças dos Peixes/tratamento farmacológico , Hymenostomatida/efeitos dos fármacos , Melaleuca/química , Óleo de Melaleuca/uso terapêutico , Adenilato Quinase/metabolismo , Animais , Peixes-Gato , Creatina Quinase/metabolismo , Doenças dos Peixes/parasitologia , Mitocôndrias/metabolismo , Piruvato Quinase/metabolismo , Baço/metabolismo
11.
Dis Aquat Organ ; 129(1): 63-70, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29916393

RESUMO

Dactylogyrus ctenopharyngodonid and Ichthyophthirius multifiliis are 2 important ectoparasites of fish. Both parasites can induce an immune response in fish that leads to a decrease in parasitic infection intensity and the development of resistance against parasitic reinfection. The present study evaluated whether grass carp Ctenopharyngodon idella that survived a D. ctenopharyngodonid infection could develop immunity against infection by D. ctenopharyngodonid and I. multifiliis. The results demonstrated that when grass carp were infected with D. ctenopharyngodonid, the number of red blood cells and the percentages of thrombocytes, monocytes, and neutrophils in the white blood cells increased significantly in the early stage of infection. The percentage of lymphocytes increased over time following parasitic infection. The mean infection intensity of D. ctenopharyngodonid decreased to 0 on Day 28. The activities of serum acid phosphatase, alkaline phosphatase, lysozyme, and superoxide dismutase increased significantly after D. ctenopharyngodonid infection. In addition, the grass carp that survived a previous D. ctenopharyngodonid infection could completely resist D. ctenopharyngodonid reinfection and partially resist I. multifiliis infection.


Assuntos
Carpas/parasitologia , Infecções por Cilióforos/veterinária , Cilióforos/imunologia , Doenças dos Peixes/parasitologia , Platelmintos , Infecções por Trematódeos/veterinária , Animais , Carpas/imunologia , Infecções por Cilióforos/imunologia , Doenças dos Peixes/imunologia , Infecções por Trematódeos/imunologia
12.
J Fish Dis ; 41(2): 263-268, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29027691

RESUMO

Adenosine deaminase (ADA) activity, through adenosine (Ado) levels, as well as xanthine oxidase (XO) activity through uric acid levels exerts an essential role on immune and inflammatory responses during infectious diseases. Thus, the aim of this study was to evaluate the involvement of seric ADA and XO activities in the inflammatory and oxidative status of silver catfish naturally infected with Ichthyophthirius multifiliis. Seric ADA activity decreased, while Ado levels increased in infected animals compared to uninfected animals. Moreover, the seric XO activity increased in infected animals compared to uninfected animals, alongside the seric levels of uric acid, metabolites of nitric oxide (NOx) and reactive oxygen species (ROS). Based on this evidence, the downregulation of seric ADA activity exerts an anti-inflammatory profile, contributing to restricting the inflammatory process. The most important finding is that upregulation of seric XO activity leads to an excessive formation of uric acid, which contributes to oxidative and inflammatory processes. Moreover, uric acid induces the release of pro-inflammatory and pro-oxidative mediators, such NOx and ROS, which contribute directly to disease pathogenesis. In summary, the upregulation of XO activity may be considered a pathway involved in NOx and ROS production in silver catfish infected with I. multifiliis.


Assuntos
Adenosina Desaminase/sangue , Peixes-Gato , Doenças dos Peixes , Proteínas de Peixes/sangue , Inflamação/veterinária , Estresse Oxidativo , Xantina Oxidase/sangue , Animais , Infecções por Cilióforos/sangue , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/metabolismo , Infecções por Cilióforos/veterinária , Doenças dos Peixes/sangue , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Hymenostomatida/fisiologia , Inflamação/imunologia
13.
Parasitol Res ; 117(2): 413-418, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29247443

RESUMO

Its integrated energetic and metabolic signaling roles place the phosphoryl transfer network, through the enzymes creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), as a regulatory system coordinating components of the cellular bioenergetics network. Analysis of these enzymes provides new information and perspectives with which to understand disturbances in energetic metabolism between sites of adenosine triphosphate (ATP) generation and utilization. Thus, the aim of this study was to evaluate the involvement of the phosphoryl transfer network in splenic tissue linked with the pathogenesis of silver catfish naturally infected with Ichthyophthirius multifiliis. Splenic cytosolic and mitochondrial CK activities decreased in infected animals compared to uninfected animals, as was also observed for splenic PK activity and splenic ATP levels. In contrast, splenic AK activity increased in infected animals compared to uninfected animals. Based on this evidence, the inhibition and absence of efficient communication between CK isoenzymes cause the impairment of splenic bioenergetics, which is in turn compensated by the augmentation of splenic AK activity in an attempt to restore energy homeostasis. The inhibition of splenic PK activity impairs communication between sites of ATP generation and ATP utilization, as corroborated by splenic ATP depletion. In summary, these alterations contribute to disease pathogenesis linked to spleen tissue in animals infected with white spot disease.


Assuntos
Peixes-Gato/parasitologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/parasitologia , Hymenostomatida/fisiologia , Baço/enzimologia , Trifosfato de Adenosina , Adenilato Quinase/metabolismo , Animais , Infecções por Cilióforos/enzimologia , Infecções por Cilióforos/parasitologia , Creatina Quinase , Metabolismo Energético , Doenças dos Peixes/enzimologia , Glicólise , Homeostase , Hymenostomatida/metabolismo , Fosforilação , Transdução de Sinais
14.
Acta Vet Hung ; 65(4): 517-530, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29256279

RESUMO

One of the main obstacles in freshwater aquaculture is the parasitic ciliate Ichthyophthirius multifiliis (Ich), the causative agent of white spot disease. The use of immunostimulants as feed additives may be a promising approach to control Ich infection. In the present study, we tested the prophylactic effect of orally administered ß-1,3/1,6-glucan and propolis extract E50 against Ich infection in common carp. In total, 122 fish were separated into three experimental groups fed with a control, 3% ß-glucan and 1% propolis diet for 40 consecutive days, respectively. On day 40, 16 fish per group were individually exposed to Ich theronts and the number of trophonts was counted 5 days post exposure. Relative gene expression of interleukin 1-ß (IL-1-ß) in common carp liver was examined by qPCR. Compared to control, the mean infection intensity was lower in the ß-glucan- and propolis-fed groups; however, the difference was not statistically significant. The relative expression of IL-1-ß significantly decreased in the propolis-fed group at day 10. In the ß-glucan-fed group, a significant IL-1-ß decrease was detected at day 15 compared to control. Although the Ich infection intensity was slightly decreased in both treated groups, and IL-1-ß was moderately down-regulated in the liver of common carp, our results suggest that the applied feeding regime is insufficient to prevent Ich outbreaks in common carp.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Carpas , Infecções por Cilióforos/veterinária , Cilióforos , Suplementos Nutricionais , Doenças dos Peixes/parasitologia , Animais , Cilióforos/genética , Cilióforos/isolamento & purificação , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/prevenção & controle , RNA/genética
15.
Fish Shellfish Immunol ; 45(2): 689-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26027759

RESUMO

This study investigated the immunization by intraperitoneal injection (i.p.) (assay I) and immersion bath (assay II) with live theronts of Ichthyophthirius multifillis in Rhamdia quelen and its influence on the hemato-immunological and biochemical parameters. Fish were divided in control (non immunized no challenged); non immunized and challenged with 12,000 theronts/fish; non immunized and challenged with 22,000 theronts/fish; immunized and challenged with 12,000 theronts/fish; immunized and challenged with 22,000 theronts/fish. Six days after challenge, either in the assay I or in the assay II the prevalence of I. multifillis in the gills was higher in non immunized fish (33.33% and 27.77%, respectively). In the assay I showed higher numbers of thrombocytes, leukocytes, lymphocytes, neutrophils and monocytes 20 days after injection and lower numbers after challenge. The immunoglobulin values were higher in fish non immunized. Fish immunized by immersion bath (assay II) showed greater values of catalase (CAT) in the liver (1245.49 U/mgprt) when compared to i.p. (198.79 U/mgprt). The levels of CAT in the liver of fish from the assay II were greater (1738.47 U/mgprt) 14 days after immunization than that observed 21 days after (1114.26 U/mgprt). The vaccination by i.p method showed influence on the hematological parameters. On the other hand, the immersion bath vaccination showed greater influence on the catalase activity in the liver. The results showed that new parameters like total protein, immunoglobulin and antioxidant enzymes could be considered in evaluating the host response to infection.


Assuntos
Peixes-Gato/imunologia , Infecções por Cilióforos/imunologia , Doenças dos Peixes/imunologia , Hymenostomatida , Vacinas Protozoárias , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Contagem de Células Sanguíneas , Catalase/metabolismo , Peixes-Gato/sangue , Peixes-Gato/parasitologia , Infecções por Cilióforos/sangue , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/sangue , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Interações Hospedeiro-Parasita , Fígado/imunologia , Fígado/metabolismo , Vacinação/veterinária
16.
Vet World ; 16(1): 111-117, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36855356

RESUMO

Background and Aim: White spot disease (WSD) is a highly lethal and contagious viral disease in marine shrimp caused by the white spot syndrome virus (WSSV). White spot disease impacts the worldwide crustacean aquaculture sector, including Thailand. This study aimed to investigate the effect of farm management practices and wild carriers on WSD occurrence in grow-out marine shrimp farms in Rayong Province, Thailand. Materials and Methods: A longitudinal study was conducted using a structured questionnaire from June 2018 to June 2020. A total of 186 questionnaires for 186 ponds were collected from 15 shrimp farms. Univariate and multivariable analyses using generalized estimating equations were used to determine the risk factors associated with WSD. In addition, possible carrier samples (wild shrimp and wild crabs) were collected inside and outside farms to test for the presence of WSSV. Results: Direct discharge of treated wastewater into farm ponds was statistically significant in the final model (p < 0.01), with an odd ratio (OR) factor of 0.097 (95% confidence interval [CI] of OR = 0.007-0.242). Pooled sampling for WSSV in wild shrimp and crabs showed that 48 out of 936 (5.13%) samples tested positive for WSD using nested polymerase chain reaction. The samples from banana shrimp, jinga shrimp, banded snapping shrimp, dwarf prawn, whiteleg shrimp, green tidal crabs, and mangrove crabs tested positive. Conclusion: Based on the findings of this study, we infer that the environment plays an important role in the spread of this disease. The results of this study will provide insights into the effective planning of disease control.

17.
Front Med (Lausanne) ; 10: 1106318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873861

RESUMO

Lichen sclerosus (LS) is an underdiagnosed inflammatory mucocutaneous condition affecting the anogenital areas. Postmenopausal women are predominantly affected and, to a lesser extent, men, prepubertal children, and adolescents. The etiology of LS is still unknown. Hormonal status, frequent trauma and autoimmune diseases are well-known associations for LS, yet infections do not seem to be clear risk factors. LS pathogenesis involves factors such as a genetic predisposition and an immune-mediated Th1-specific IFNγ-induced phenotype. Furthermore, there is a distinct expression of tissue remodeling associated genes as well as microRNAs. Oxidative stress with lipid and DNA peroxidation provides an enabling microenvironment to autoimmunity and carcinogenesis. Circulating IgG autoantibodies against the extracellular matrix protein 1 and hemidesmosome may contribute to the progression of LS or simply represent an epiphenomenon. The typical clinical picture includes chronic whitish atrophic patches along with itching and soreness in the vulvar, perianal and penile regions. In addition to genital scarring, and sexual and urinary dysfunction, LS may also lead to squamous cell carcinoma. Disseminated extragenital LS and oral LS are also reported. The diagnosis is usually clinical; however, a skin biopsy should be performed in case of an unclear clinical picture, treatment failure or suspicion of a neoplasm. The gold-standard therapy is the long-term application of ultrapotent or potent topical corticosteroids and, alternatively, topical calcineurin inhibitors such as pimecrolimus or tacrolimus. Collectively, LS is a common dermatological disease with a so far incompletely understood pathogenesis and only limited treatment options. To foster translational research in LS, we provide here an update on its clinical features, pathogenesis, diagnosis and (emerging) treatment options.

18.
Genes (Basel) ; 14(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003004

RESUMO

Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is a serious disease that significantly impacts maize production and productivity. In recent years, outbreaks of white spot disease have resulted in substantial maize yield losses in southwest China. Researchers from various countries worldwide have conducted extensive research on this pathogen, including its isolation and identification, the localization of resistance genes, transmission pathways, as well as potential control measures. However, the information related to this disease remains fragmented, and standardized preventive and control strategies have not yet been established. In light of this, this review aims to comprehensively summarize the research findings on MWS, providing valuable insights into understanding its occurrence, prevention, and control measures in the southwestern and southern regions of China while also mitigating the detrimental impact and losses caused by MWS on maize production in China and across the world.


Assuntos
Zea mays , Zea mays/genética , Zea mays/microbiologia , China/epidemiologia
19.
Environ Sci Pollut Res Int ; 30(10): 25325-25343, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35025041

RESUMO

At present, food security is a matter of debate of global magnitude and fulfilling the feeding requirement of > 8 billion human populations by 2030 is one of the major concerns of the globe. Aquaculture plays a significant role to meet the global food requirement. Shrimp species such as Litopenaeus vannamei, Penaeus monodon, and Macrobrachium rosenbergii are among the most popular food commodities worldwide. As per Global Outlook for Aquaculture Leadership survey, disease outbreaks have been a matter of concern from the past many decades regarding the shrimp aquaculture production. Among the past disease outbreaks, white spot disease caused by the white spot syndrome virus is considered to be one of the most devastating ones that caused colossal losses to the shrimp industry. Since the virus is highly contagious, it spreads gregariously among the shrimp population; hence, practicing proper sanitization practices is crucial in order to have disease-free shrimps. Additionally, in order to control the disease, antibiotics were used that further leads to bioaccumulation and biomagnification of antibiotics in several food webs. The bioaccumulation of the toxic residues in the food webs further adversely affected human too. Recently, immunostimulants/antivirals were used as an alternative to antibiotics. They were found to enhance the immune system of shrimps in eco-friendly manner. In context to this, the present paper presents a critical review on the immunostimulants available from plants, animals, and chemicals against WSSV in shrimps. Looking into this scenario, maintaining proper sanitation procedures in conjunction with the employment of immunostimulants may be a viable approach for preserving shrimp aquaculture across the globe.


Assuntos
Palaemonidae , Penaeidae , Animais , Humanos , Adjuvantes Imunológicos , Aquicultura , Alimentos Marinhos
20.
J Biomol Struct Dyn ; 41(16): 7757-7767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36120991

RESUMO

White Spot disease is a devastating disease of shrimps caused by White Spot Syndrome Virus in multifarious shrimp species. At present there is no absolute medication to suppress the disease hence, there is an urgent need for development of drug against the virus. Molecular interaction between viral envelope protein VP28 and shrimp receptor protein especially chitins play a pivotal role in ingression of WSSV. In the present study, we have tried to shed light on structural aspects of lectin protein in Marsupenaeus japonicus (MjsvCL). A structural insight to the CTLD-domain of MjsvCL has facilitated the understanding of the binding mechanism between the two proteins that is responsible for entry of WSSV into shrimps. Further, incorporation of molecular dynamics simulation and MMPBSA studies revealed the affinity of binding and certain hotspot residues, which are critical for association of both the proteins. For the first time we have proposed that these amino acids are quintessential for formation of VP28-MjsvCL complex and play crucial role in entry of WSSV into shrimps. Targeting the interaction between VP28 and CTLD of MjsvCL may possibly serve as a potential drug target. The current study provides information for better understanding the interaction between VP28 and MjsvCL that could be a plausible site for future inhibitors against WSSV in shrimps.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA