Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 412(9): 2137-2149, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32034454

RESUMO

Assessment of viable biomass is challenging in bioprocesses involving complex media with distinct biomass and media particle populations. Biomass monitoring in these circumstances usually requires elaborate offline methods or sophisticated inline sensors. Reliable monitoring tools in an at-line capacity represent a promising alternative but are still scarce to date. In this study, a flow cytometry-based method for biomass monitoring in spent sulfite liquor medium as feedstock for second generation bioethanol production with yeast was developed. The method is capable of (i) yeast cell quantification against medium background, (ii) determination of yeast viability, and (iii) assessment of yeast physiology though morphological analysis of the budding division process. Thus, enhanced insight into physiology and morphology is provided which is not accessible through common online and offline biomass monitoring methods. To demonstrate the capabilities of this method, firstly, a continuous ethanol fermentation process of Saccharomyces cerevisiae with filtered and unfiltered spent sulfite liquor media was analyzed. Subsequently, at-line process monitoring of viability in a retentostat cultivation was conducted. The obtained information was used for a simple control based on addition of essential nutrients in relation to viability. Thereby, inter-dependencies between nutrient supply, physiology, and specific ethanol productivity that are essential for process design could be illuminated. Graphical abstract.


Assuntos
Reatores Biológicos , Meios de Cultura/metabolismo , Etanol/metabolismo , Citometria de Fluxo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sulfitos/metabolismo , Biomassa , Desenho de Equipamento , Fermentação , Microbiologia Industrial/instrumentação , Saccharomyces cerevisiae/metabolismo
2.
Food Technol Biotechnol ; 56(2): 208-217, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30228795

RESUMO

In this paper the effect of aflatoxin B1, ochratoxin A and zearalenon on morphology, growth parameters and metabolic activity of yeasts Saccharomyces cerevisiae, Saccharomyces uvarum, Candida utilis and Kluyveromyces marxianus was determined. The results showed that the three mycotoxins affected the morphology of all these yeasts, primarily the cell diameter, but not their final cell count. Fourier transform infrared spectroscopy showed that the yeast membranes bound the mycotoxins, C. utilis in particular. The cell membranes of most yeasts underwent denaturation, except S. uvarum exposed to ochratoxin A and zearalenone. In the early stage of fermentation, all mycotoxin-exposed yeasts had lower metabolic activity and biomass growth than controls, but fermentation products and biomass concentrations reached the control levels by the end of the fermentation, except for C. utilis exposed to 20 µg/mL of zearalenone. The adaptive response to mycotoxins suggests that certain yeasts could be used to control mycotoxin concentrations in the production of fermented food and beverages.

3.
Biotechniques ; 72(3): 100-103, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124979

RESUMO

Filamentous growth in Saccharomyces cerevisiae is a stress response commonly induced under nutrient deprivation and by certain alcohols. It is a compound phenotype characterized by pseudohyphal growth, invasion and a shift to more polarized budding. Previous methods have not allowed the time-resolved determination of filamentous growth. Here we present a new method for budding pattern characterization that enables the measurement of filamentous growth and metabolite concentration during yeast cell growth at precise time intervals. By combining chemical cell immobilization and single-cell imaging using an oCelloScope™, this method provides more accurate budding pattern classification compared with previous methods. The applications of the method include, for example, investigation of quorum sensing-controlled yeast filamentous growth and metabolism under stress and identification of toxic metabolites.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , Divisão Celular , Proliferação de Células , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Bioresour Technol ; 365: 128178, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279979

RESUMO

Resveratrol is a polyphenol with numerous applications in food, pharma, and cosmetics. Lack of precursors and low titer are the main problems hindering industrial scale resveratrol production. Based on previous prescreening, expressing the combination of FjTAL, Pc4CL1 and VvSTS achieved the best resveratrol titer. This was further improved to 235.1 mg/L through engineering the shikimic acid pathway, applying a modular enzyme assembly of Pc4CL1 and VvSTS, enhancing p-coumaric acid supply and diverting glycolytic flux toward erythrose-4-phosphate. The titer was increased to 819.1 mg/L following two rounds of multicopy integration of resveratrol biosynthesis and malonyl-CoA supply, respectively. The titer reached 22.5 g/L with a yield on glucose of 65.5 mg/g using an optimum fed-batch strategy in a 5 L bioreactor with morphology control. This research is the highest report on the de novo production of resveratrol in Yarrowia lipolytica and the findings lay a solid foundation for other producing polyphenols.


Assuntos
Yarrowia , Yarrowia/metabolismo , Resveratrol/metabolismo , Engenharia Metabólica , Malonil Coenzima A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA