Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39060374

RESUMO

BACKGROUND: CI-8993 is a fully human IgG1κ monoclonal antibody (mAb) that binds specifically to immune checkpoint molecule VISTA (V-domain Ig suppressor of T-cell activation). Phase I safety has been established in patients with advanced cancer (NCT02671955). To determine the pharmacokinetics and biodistribution of CI-8993 in patients, we aimed to develop 89Zr-labelled CI-8993 and validate PET imaging and quantitation in preclinical models prior to a planned human bioimaging trial. METHODS: CI-8993 and human isotype IgG1 control were conjugated to the metal ion chelator p-isothiocyanatobenzyl-desferrioxamine (Df). Quality of conjugates were assessed by SE-HPLC, SDS-PAGE, and FACS. After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. [89Zr]Zr-Df-CI-8993 alone (1 mg/kg, 4.6 MBq) or in combination with 30 mg/kg unlabelled CI-8993, as well as isotype control [89Zr]Zr-Df-IgG1 (1 mg/kg, 4.6 MBq) were assessed in human VISTA knock-in female (C57BL/6 N-Vsirtm1.1(VSIR)Geno, huVISTA KI) or control C57BL/6 mice bearing syngeneic MB49 bladder cancer tumours; and in BALB/c nu/nu mice bearing pancreatic Capan-2 tumours. RESULTS: Stable constructs with an average chelator-to-antibody ratio of 1.81 were achieved. SDS-PAGE and SE-HPLC showed integrity of CI-8993 was maintained after conjugation; and ELISA indicated no impact of conjugation and radiolabelling on binding to human VISTA. PET imaging and biodistribution in MB49 tumour-bearing huVISTA KI female mice showed specific localisation of [89Zr]Zr-Df-CI-8993 to VISTA in spleen and tumour tissues expressing human VISTA. Specific tumour uptake was also demonstrated in Capan-2 xenografted BALB/c nu/nu mice. CONCLUSIONS: We radiolabelled and validated [89Zr]Zr-Df-CI-8993 for specific binding to huVISTA in vivo. Our results demonstrate that 89Zr-labelled CI-8993 is now suitable for targeting and imaging VISTA expression in human trials.

2.
Eur J Nucl Med Mol Imaging ; 51(9): 2547-2557, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625402

RESUMO

PURPOSE: Cadherin-17 (CDH17) is a calcium-dependent cell adhesion protein that is overexpressed in several adenocarcinomas, including gastric, colorectal, and pancreatic adenocarcinoma. High levels of CDH17 have been linked to metastatic disease and poor prognoses in patients with these malignancies, fueling interest in the protein as a target for diagnostics and therapeutics. Herein, we report the synthesis, in vitro validation, and in vivo evaluation of a CDH17-targeted 89Zr-labeled immunoPET probe. METHODS: The CDH17-targeting mAb D2101 was modified with an isothiocyanate-bearing derivative of desferrioxamine (DFO) to produce a chelator-bearing immunoconjugate - DFO-D2101 - and flow cytometry and surface plasmon resonance (SPR) were used to interrogate its antigen-binding properties. The immunoconjugate was then radiolabeled with zirconium-89 (t1/2 ~ 3.3 days), and the serum stability and immunoreactive fraction of [89Zr]Zr-DFO-D2101 were determined. Finally, [89Zr]Zr-DFO-D2101's performance was evaluated in a trio of murine models of pancreatic ductal adenocarcinoma (PDAC): subcutaneous, orthotopic, and patient-derived xenografts (PDX). PET images were acquired over the course of 5 days, and terminal biodistribution data were collected after the final imaging time point. RESULTS: DFO-D2101 was produced with a degree of labeling of ~ 1.1 DFO/mAb. Flow cytometry with CDH17-expressing AsPC-1 cells demonstrated that the immunoconjugate binds to its target in a manner similar to its parent mAb, while SPR with recombinant CDH17 revealed that D2101 and DFO-D2101 exhibit nearly identical KD values: 8.2 × 10-9 and 6.7 × 10-9 M, respectively. [89Zr]Zr-DFO-D2101 was produced with a specific activity of 185 MBq/mg (5.0 mCi/mg), remained >80% stable in human serum over the course of 5 days, and boasted an immunoreactive fraction of >0.85. In all three murine models of PDAC, the radioimmunoconjugate yielded high contrast images, with high activity concentrations in tumor tissue and low uptake in non-target organs. Tumoral activity concentrations reached as high as >60 %ID/g in two of the cohorts bearing PDXs. CONCLUSION: Taken together, these data underscore that [89Zr]Zr-DFO-D2101 is a highly promising probe for the non-invasive visualization of CDH17 expression in PDAC. We contend that this radioimmunoconjugate could have a significant impact on the clinical management of patients with both PDAC and gastrointestinal adenocarcinoma, most likely as a theranostic imaging tool in support of CDH17-targeted therapies.


Assuntos
Caderinas , Radioisótopos , Zircônio , Animais , Humanos , Camundongos , Caderinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Desferroxamina/química , Adenocarcinoma/diagnóstico por imagem , Imunoconjugados/farmacocinética , Anticorpos Monoclonais/farmacocinética , Distribuição Tecidual , Tomografia por Emissão de Pósitrons
3.
Eur J Nucl Med Mol Imaging ; 51(11): 3202-3214, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730087

RESUMO

PURPOSE: ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS: ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS: The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION: [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Zircônio , Animais , Zircônio/química , Camundongos , Antígeno B7-H1/metabolismo , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Distribuição Tecidual , Humanos , Linhagem Celular Tumoral , Radioisótopos/química , Desferroxamina/química , Desferroxamina/análogos & derivados , Tomografia por Emissão de Pósitrons , Feminino , Marcação por Isótopo , Camundongos Endogâmicos BALB C , Isotiocianatos
4.
Mol Pharm ; 21(5): 2544-2554, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588328

RESUMO

Vascular endothelial growth factor (VEGF) targeted therapy serves as an important therapeutic approach for renal cancer, but its clinical effectiveness is unsatisfactory. Moreover, there is a lack of reliable biomarkers for preoperative assessment of tumor VEGF expression. This study aimed to explore the potential for further applications of 177Lu/89Zr-labeled aflibercept (Abe), a VEGF-binding agent, in imaging visualization of VEGF expression and therapy for renal cancer. To determine specificity uptake in renal cancer, BALB/c mice with VEGF-expressing Renca tumor were intravenously injected with [89Zr]Zr-Abe, [177Lu]Lu-Abe, or Cy5.5-Abe and the blocking group was designed as a control group. PET, SPECT, and fluorescence images were acquired, and the biodistribution of [89Zr]Zr-Abe and [177Lu]Lu-Abe was performed. Additionally, the [177Lu]Lu-Abe, [177Lu]Lu-Abe-block, 177Lu only, Abe only, and PBS groups were compared for evaluation of the therapeutic effect. To assess the safety, we monitored and evaluated the body weight, blood biochemistry analysis, and whole blood analysis and major organs were stained with hematoxylin and eosin after [177Lu]Lu-Abe treatment. DOTA-Abe was successfully labeled with 177Lu and Df-Abe with 89Zr in our study. The uptake in tumor of [89Zr]Zr-Abe was significantly higher than that of [89Zr]Zr-Abe-block (P < 0.05) and provided excellent tumor contrast in PET images. [177Lu]Lu-Abe demonstrated promising tumor-specific targeting capability with a high and persistent tumor uptake. The standardized tumor volume of [177Lu]Lu-Abe was significantly smaller than those of other treatment groups (P < 0.05). [177Lu]Lu-Abe also had smaller tumor volumes and reduced expression of VEGF and CD31 compared to those of the control groups. Fluorescence images demonstrate higher tumor uptake in the Cy5.5-Abe group compared to the Cy5.5-Abe-block group (P < 0.05). In conclusion, [89Zr]Zr-Abe enables noninvasive analysis of VEGF expression, serving as a valuable tool for assessing the VEGF-targeted therapy effect. Additionally, all of the findings support the enhanced therapeutic efficacy and safety of [177Lu]Lu-Abe, making it a viable option for clinical practice in renal cancer.


Assuntos
Neoplasias Renais , Lutécio , Camundongos Endogâmicos BALB C , Radioisótopos , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Zircônio , Animais , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacocinética , Zircônio/química , Camundongos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/metabolismo , Distribuição Tecidual , Humanos , Linhagem Celular Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Nanomedicina Teranóstica/métodos , Feminino , Tomografia por Emissão de Pósitrons/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Pharm ; 21(10): 5205-5216, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39322604

RESUMO

B7-H3 has emerged as a promising target and potential biomarker for diagnosing tumors, evaluating treatment efficacy, and determining patient prognosis. Hu4G4 is a recombinant humanized antibody that selectively targets the extracellular domain of human B7-H3. In this study, we describe the radiolabeling of hu4G4 with the positron emission tomography (PET) emitter radionuclide zirconium 89 (89Zr) and evaluate its potency as an immuno-PET tracer for B7-H3-targeted imaging by comparing it in vitro and in vivo to [89Zr]Zr-DFO-DS-5573a using various models. The radiolabeled compound, [89Zr]Zr-desferrioxamine-hu4G4 ([89Zr]Zr-DFO-hu4G4), demonstrated a high radiochemical purity (RCP) of greater than 99% and a specific activity of 74 MBq/mg following purification. Additionally, it maintained stability in human serum albumin (HSA) and acetate buffer, preserving over 90% of its RCP after 7 days. Three cell lines targeting human B7-H3(U87/CT26-CD276/GL261-CD276) were used. Flow cytometry analysis indicated that the B7-H3-positive cells (U87/CT26-CD276/GL261-CD276) had a higher B7-H3 protein level with no expression in the B7-H3-negative cells (CT26-wt/GL261-wt) (P < 0.001). Moreover, the cellular uptake was 45.71 ± 3.78% for [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells versus only 0.93 ± 0.47% in CT26-wt cells and 30.26 ± 0.70% when [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells were blocked with 100× 8H9. The cellular uptake of [89Zr]Zr-DFO-hu4G4 was akin to that observed with [89Zr]Zr-DFO-DS-5573a with no significant differences (45.71 ± 3.78 % vs 47.07 ± 0.86 %) in CT26-CD276 cells. Similarly, the CT26-CD276 mouse model demonstrated markedly low organ uptake and elevated tumor uptake 48 h after [89Zr]Zr-DFO-hu4G4 injection. PET/CT analysis showed that the tumor-to-muscle (T/M) ratios were substantially higher compared to other imaging groups: 27.65 ± 3.17 in CT26-CD276 mice versus 11.68 ± 4.19 in CT26-wt mice (P < 0.001) and 16.40 ± 0.78 when 100× 8H9 was used to block [89Zr]Zr-DFO-hu4G4 in CT26-CD276 mice (P < 0.01) at 48 h post-injection. Additionally, the tracer showed markedly high accumulation in the tumor region (22.57 ± 3.03% ID/g), comparable to the uptake of [89Zr]Zr-DFO-DS-5573a (24.76 ± 5.36% ID/g). A dosimetry estimation study revealed that the effective dose for [89Zr]Zr-DFO-hu4G4 was 2.96 × 10-01 mSv/MBq, which falls within the acceptable range for further research in nuclear medicine. Collectively, these results indicated that [89Zr]Zr-DFO-hu4G4 was successfully fabricated and applied in B7-H3-targeted tumor PET/CT imaging, which showed excellent imaging quality and tumor detection efficacy in tumor-bearing mice. It is a promising imaging agent for identifying tumors that overexpress B7-H3 for future clinical applications.


Assuntos
Antígenos B7 , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Zircônio/química , Animais , Humanos , Antígenos B7/metabolismo , Camundongos , Radioisótopos/química , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos Monoclonais Humanizados/química , Distribuição Tecidual , Feminino , Desferroxamina/química , Neoplasias/diagnóstico por imagem , Camundongos Endogâmicos BALB C , Camundongos Nus
6.
Mol Pharm ; 21(8): 3992-4003, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38941565

RESUMO

Lymphocyte activation gene 3 (LAG-3) has attracted much attention as a potentially valuable immune checkpoint. Individual identification of LAG-3 expression at screening and during treatment could improve the successful implementation of anti-LAG-3 therapies. HuL13 is a human IgG1 monoclonal antibody that binds to the LAG-3 receptor in T cells. Here, we used [89Zr]Zr-labeled HuL13 to delineate LAG-3+ T-cell infiltration into tumors via positron emission tomography (PET) imaging. A549/LAG-3 cells, which stably express LAG-3, were generated by infection with lentivirus. The uptake of [89Zr]Zr-DFO-HuL13 in A549/LAG-3 cells was greater than that in the negative control (A549/NC) cells at each time point. The equilibrium dissociation constant (Kd) of [89Zr]Zr-DFO-HuL13 for the LAG-3 receptor was 8.22 nM. PET imaging revealed significant uptake in the tumor areas of A549/LAG-3 tumor-bearing mice from 24 h after injection (SUVmax = 2.43 ± 0.06 at 24 h). As a proof of concept, PET imaging of the [89Zr]Zr-DFO-HuL13 tracer was further investigated in an MC38 tumor-bearing humanized LAG-3 mouse model. PET imaging revealed that the [89Zr]Zr-DFO-HuL13 tracer specifically targets human LAG-3 expressed on tumor-infiltrating lymphocytes (TILs). In addition to the tumors, the spleen was also noticeably visible. Tumor uptake of the [89Zr]Zr-DFO-HuL13 tracer was lower than its uptake in the spleen, but high uptake in the spleen could be reduced by coinjection of unlabeled antibodies. Coinjection of unlabeled antibodies increases tracer activity in the blood pool, thereby improving tumor uptake. Dosimetry evaluation of the healthy mouse models revealed that the highest absorbed radiation dose was in the spleen, followed by the liver and heart wall. In summary, these studies demonstrate the feasibility of using the [89Zr]Zr-DFO-HuL13 tracer for the detection of LAG-3 expression on TILs. Further clinical evaluation of the [89Zr]Zr-DFO-HuL13 tracer may be of significant help in the stratification and management of patients suitable for anti-LAG-3 therapy.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , Linfócitos do Interstício Tumoral , Tomografia por Emissão de Pósitrons , Zircônio , Animais , Humanos , Camundongos , Zircônio/química , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Antígenos CD/imunologia , Radioisótopos/química , Anticorpos Monoclonais/química , Feminino , Distribuição Tecidual
7.
Mol Pharm ; 21(9): 4490-4497, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39077827

RESUMO

The aim of this study was to evaluate the preclinical efficacy of [89Zr]Zr-DFO-Ab253 as a novel positron emission tomography (PET) tracer for CD146-positive malignant melanoma imaging. Considering the high expression of CD146 in malignant melanoma, this study investigated the effect of different CD146 expression levels on the tumor uptake of [89Zr]Zr-DFO-Ab253. CD146 selectivity was investigated by using the CD146-positive human melanoma cell A375 and the CD146-negative human alveolar epithelial cell A549. The cell uptake of [89Zr]Zr-DFO-Ab253 tracers was investigated, and receptor-binding affinities were measured by radioactive enzyme-linked immunosorbent assay. Biodistribution studies and micro-PET imaging of the radiotracers were performed on mice bearing A375 and A549 xenografts under baseline and blocking conditions. An immunohistochemical test was performed using A375 and A549 tissue sections for CD146 expression level analysis. [89Zr]Zr-DFO-Ab253 was obtained with a high radiochemical yield (87.86 ± 4.66%) and a satisfactory radiochemical purity (>98.0%). The specificity and affinity of [89Zr]Zr-DFO-Ab253 were confirmed in melanoma A375 cells and in vivo PET imaging of A375 tumor models. [89Zr]Zr-DFO-IgG and A549 lung tumors were prepared as control radiotracers and negative models to verify the specificity of [89Zr]Zr-DFO-Ab253 on CD146. [89Zr]Zr-DFO-Ab253 has a Kd of 4.01 ± 0.50 nM. PET imaging and biodistribution showed a higher uptake of [89Zr]Zr-DFO-Ab253 in A375 melanomas than that in A549 tumors (42.1 ± 4.04% vs 7.87 ± 1.30% ID/g at 120 h, P < 0.05). A low tumor uptake of [89Zr]Zr-DFO-IgG was observed with uptakes of 1.91 ± 0.41 and 2.80 ± 0.14 ID%/g when blocked at 120 h. The radiation-absorbed dose was calculated to be 0.13 mSv/MBq. This study demonstrates the synthesis and preclinical evaluation of [89Zr]Zr-DFO-Ab253 and indicates that the novel tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma. It also provides feasibility for the development of integrated molecular probes for diagnosis and treatment based on the CD146 target.


Assuntos
Anticorpos Monoclonais , Antígeno CD146 , Melanoma , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Antígeno CD146/metabolismo , Antígeno CD146/imunologia , Animais , Humanos , Zircônio/química , Melanoma/diagnóstico por imagem , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais/química , Distribuição Tecidual , Linhagem Celular Tumoral , Camundongos Nus , Células A549 , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Feminino
8.
J Labelled Comp Radiopharm ; 67(8): 280-287, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744538

RESUMO

A key aspect for the applicability of 89Zr-radioimmunoconjugates is inert modification and radiolabeling. The two commercially available bifunctional variants of the siderophore desferrioxamine (DFO), Fe-DFO-N-suc-TFP-ester and p-NCS-Bz-DFO, are most often used for clinical 89Zr-immuno-PET. The use of Fe-DFO-N-suc-TFP-ester is advantageous with regard to higher radiolysis stability and more facile assessment of radiochemical purity as well as chelator-to-mAb ratio. However, not all mAbs withstand the Fe-removal step at relatively low pH (4-4.5) using EDTA, which is needed after conjugation to allow 89Zr labeling. In this study, it was investigated whether hydroxybenzyl ethylenediamine (HBED) or the clinically approved deferiprone (DFP) can serve as an alternative for EDTA to establish a pH-independent mild method for Fe-removal and thereby broaden the applicability of Fe-DFO-N-suc-TFP-ester. Carrier-added [59Fe]Fe-DFO-N-suc-TFP-ester was used for mAb modification to enable direct tracking of the Fe-removal efficiency under various conditions. Whereas incomplete Fe-removal with HBED was observed at pH 5 or higher, Fe-removal with DFP was possible at a broad pH range (4-9). This provides a mild, pH-independent method for Fe-removal, improving the applicability and attractiveness of Fe-DFO-N-suc-TFP-ester for 89Zr-mAb preparation.


Assuntos
Desferroxamina , Ferro , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Zircônio/química , Desferroxamina/química , Radioisótopos/química , Ferro/química , Tomografia por Emissão de Pósitrons/métodos , Piridonas/química , Deferiprona/química , Imunoconjugados/química , Compostos Radiofarmacêuticos/química , Anticorpos Monoclonais/química
9.
Drug Dev Res ; 85(7): e22266, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39363532

RESUMO

This study presents the development and evaluation of a DFO@mAb-NP (DFO@Durvalumab-HSA-DTX nanoparticle) nanoplatform for imaging in triple-negative breast cancer (TNBC). The nanoplatform demonstrated significant changes postconjugation with DFO, evidenced by increased particle size from 178.1 ± 5 nm to 311 ± 26 nm and zeta potential alteration from -31.9 ± 3 mV to -40.5 ± 0.8 mV. Fourier-transform infrared spectroscopy and ultraviolet spectral analyses confirmed successful DFO conjugation, with notable shifts in peak wavelengths. High labeling efficiency was achieved with 89Zr, as indicated by thin layer radio chromatography and high-performance liquid radio chromatography results, with labeling efficiencies of 98 ± 2% for 89Zr-DFO@mAb and 96 ± 3% for 89Zr-DFO@mAb-NP. The nanoplatforms maintained stability over 24 h, showing less than 5% degradation. Lipophilicity assays revealed logP values of 0.5 ± 0.03 for 89Zr-DFO@mAb-NP and 0.98 ± 0.2 for 89Zr-DFO@mAb, indicating a higher lipophilic tendency in the radiolabeled Durvalumab. Cell uptake experiments showed an initial high uptake in MDA-MB-468 cells (45.1 ± 3.2%), which decreased over time, highlighting receptor-specific interactions. These comprehensive findings suggest the promising potential of the DFO@mAb-NP nanoplatform for targeted imaging in TNBC, with implications for improved diagnostic accuracy and treatment strategies.


Assuntos
Nanopartículas , Radioisótopos , Neoplasias de Mama Triplo Negativas , Zircônio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Humanos , Nanopartículas/química , Zircônio/química , Radioisótopos/química , Linhagem Celular Tumoral , Desferroxamina/química , Desferroxamina/farmacologia , Feminino
10.
Eur J Nucl Med Mol Imaging ; 50(8): 2258-2270, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36947185

RESUMO

PURPOSE: Monoclonal antibody (mAb)-based PET (immunoPET) imaging can characterise tumour lesions non-invasively. It may be a valuable tool to determine which patients may benefit from treatment with a specific monoclonal antibody (mAb) and evaluate treatment response. For 89Zr immunoPET imaging, higher sensitivity of state-of-the art PET/CT systems equipped with silicon photomultiplier (SiPM)-based detector elements may be beneficial as the low positron abundance of 89Zr causes a low signal-to-noise level. Moreover, the long physical half-life limits the amount of activity that can be administered to the patients leading to poor image quality even when using long scan durations. Here, we investigated the difference in semiquantitative performance between the PMT-based Biograph mCT, our clinical reference system, and the SiPM-based Biograph Vision PET/CT in 89Zr immunoPET imaging. Furthermore, the effects of scan duration reduction using the Vision on semiquantitative imaging parameters and its influence on image quality assessment were evaluated. METHODS: Data were acquired on day 4 post 37 MBq 89Zr-labelled mAb injection. Five patients underwent a double scan protocol on both systems. Ten patients were scanned only on the Vision. For PET image reconstruction, three protocols were used, i.e. one camera-dependent protocol and European Association of Nuclear Medicine Research Limited (EARL) standards 1 and 2 compliant protocols. Vision data were acquired in listmode and were reprocessed to obtain images at shorter scan durations. Semiquantitative PET image parameters were derived from tumour lesions and healthy tissues to assess differences between systems and scan durations. Differently reconstructed images obtained using the Vision were visually scored regarding image quality by two nuclear medicine physicians. RESULTS: When images were reconstructed using 100% acquisition time on both systems following EARL standard 1 compliant reconstruction protocols, results regarding semiquantification were comparable. For Vision data, reconstructed images that conform to EARL1 standards still resulted in comparable semiquantification at shorter scan durations (75% and 50%) regarding 100% acquisition time. CONCLUSION: Scan duration of 89Zr immunoPET imaging using the Vision can be decreased up to 50% compared with using the mCT while maintaining image quality using the EARL1 compliant reconstruction protocol.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias/diagnóstico por imagem , Padrões de Referência , Anticorpos Monoclonais , Tomografia por Emissão de Pósitrons/métodos , Processamento de Imagem Assistida por Computador
11.
Eur J Nucl Med Mol Imaging ; 50(2): 287-301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271158

RESUMO

BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Adulto , Humanos , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Indicadores e Reagentes/uso terapêutico , Distribuição Tecidual , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Zircônio/química , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral
12.
Eur J Nucl Med Mol Imaging ; 50(7): 2068-2080, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36859619

RESUMO

PURPOSE: Although lymphocyte activation gene-3 (LAG-3) directed therapies demonstrate promising clinical anti-cancer activity, only a subset of patients seems to benefit and predictive biomarkers are lacking. Here, we explored the potential use of the anti-LAG-3 antibody tracer [89Zr]Zr-BI 754111 as a predictive imaging biomarker and investigated its target specific uptake as well as the correlation of its tumor uptake and the tumor immune infiltration. METHODS: Patients with head and neck (N = 2) or lung cancer (N = 4) were included in an imaging substudy of a phase 1 trial with BI 754091 (anti-PD-1) and BI 754111 (anti-LAG-3). After baseline tumor biopsy and [18F]FDG-PET, patients were given 240 mg of BI 754091, followed 8 days later by administration of [89Zr]Zr-BI 754111 (37 MBq, 4 mg). PET scans were performed 2 h, 96 h, and 144 h post-injection. To investigate target specificity, a second tracer administration was given two weeks later, this time with pre-administration of 40 (N = 3) or 600 mg (N = 3) unlabeled BI 754111, followed by PET scans at 96 h and 144 h post-injection. Tumor immune cell infiltration was assessed by immunohistochemistry and RNA sequencing. RESULTS: Tracer uptake in tumors was clearly visible at the 4-mg mass dose (tumor-to-plasma ratio 1.63 [IQR 0.37-2.89]) and could be saturated by increasing mass doses (44 mg: 0.67 [IQR 0.50-0.85]; 604 mg: 0.56 [IQR 0.42-0.75]), demonstrating target specificity. Tumor uptake correlated to immune cell-derived RNA signatures. CONCLUSIONS: [89Zr]Zr-BI-754111 PET imaging shows favorable technical and biological characteristics for developing a potential predictive imaging biomarker for LAG-3-directed therapies. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03780725. Registered 19 December 2018.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Radioisótopos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Zircônio , Linhagem Celular Tumoral
13.
Eur J Nucl Med Mol Imaging ; 50(9): 2899-2909, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148297

RESUMO

RATIONALE: In patients with biochemical recurrence of prostate cancer (BCR), preliminary data suggest that prostate-specific membrane antigen (PSMA) ligand radiotracers labeled with zirconium-89 (89Zr; half-life ~ 78.41 h), which allow imaging ≥ 24 h post-injection, detect suspicious lesions that are missed when using tracers incorporating short-lived radionuclides. MATERIALS AND METHODS: To confirm [89Zr]Zr-PSMA-617 positron emission tomography/computed tomography (PET/CT) detection efficacy regarding such lesions, and compare quality of 1-h, 24-h, and 48-h [89Zr]Zr-PSMA-617 scans, we retrospectively analyzed visual findings and PET variables reflecting lesional [89Zr]Zr-PSMA-617 uptake and lesion-to-background ratio. The cohort comprised 23 men with BCR post-prostatectomy, median (minimum-maximum) prostate-specific antigen (PSA) 0.54 (0.11-2.50) ng/mL, and negative [68Ga]Ga-PSMA-11 scans 40 ± 28 d earlier. Primary endpoints were percentages of patients with, and classifications of, suspicious lesions. RESULTS: Altogether, 18/23 patients (78%) had 36 suspicious lesions (minimum-maximum per patient: 1-4) on both 24-h and 48-h scans (n = 33 lesions) or only 48-h scans (n = 3 lesions). Only one lesion appeared on a 1-h scan. Lesions putatively represented local recurrence in 11 cases, and nodal or bone metastasis in 21 or 4 cases, respectively; 1/1 lesion was histologically confirmed as a nodal metastasis. In all 15 patients given radiotherapy based on [89Zr]Zr-PSMA-617 PET/CT, PSA values decreased after this treatment. Comparison of PET variables in 24-h vs 48-h scans suggested no clear superiority of either regarding radiotracer uptake, but improved lesion-to-background ratio at 48 h. CONCLUSIONS: In men with BCR and low PSA, [89Zr]Zr-PSMA-617 PET/CT seems effective in finding prostate malignancy not seen on [68Ga]Ga-PSMA-11 PET/CT. The higher detection rates and lesion-to-background ratios of 48-h scans versus 24-h scans suggest that imaging at the later time may be preferable. Prospective study of [89Zr]Zr-PSMA-617 PET/CT is warranted.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Estudos Prospectivos , Estudos Retrospectivos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Recidiva
14.
Molecules ; 29(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202768

RESUMO

The interdisciplinary possibilities inherent in nuclear medicine offer an opportunity for the patient-centered development of radioactive pharmaceuticals based on specific research questions. This approach provides radiopharmaceutical manufacturers with a robust scientific foundation on which to navigate the regulatory requirements for drug approval laid down by the law. A vivid illustration of this interdisciplinary cooperation has been the development of a Zr-89-labeled PSMA ligand where reliable results have been obtained across various domains, including chemistry, radiochemistry, biochemistry, and preclinical research. This comprehensive process extended to feasibility studies conducted with carefully selected patients from a single nuclear medicine clinic. The approach demonstrates how far close collaboration between different disciplines within nuclear medicine can further the move towards patient-oriented radiopharmaceutical treatments while simultaneously meeting regulatory demands. With such a strategy, innovative radiopharmaceutical solutions can be brought to the market more swiftly and efficiently, in line with the needs of patients.


Assuntos
Medicina Nuclear , Humanos , Radioisótopos , Compostos Radiofarmacêuticos , Zircônio
15.
Eur J Nucl Med Mol Imaging ; 49(13): 4736-4747, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35930033

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA)-targeted PET/CT has become increasingly important in the management of prostate cancer, especially in localization of biochemical recurrence (BCR). PSMA-targeted PET/CT imaging with long-lived radionuclides as 89Zr (T1/2 = 78.4 h) may improve diagnostics by allowing data acquisition on later time points. In this study, we present our first clinical experience including preliminary biodistribution and dosimetry data of [89Zr]Zr-PSMA-617 PET/CT in patients with BCR of prostate cancer. METHODS: Seven patients with BCR of prostate cancer who revealed no (n = 4) or undetermined (n = 3) findings on [68Ga]Ga-PSMA-11 PET/CT imaging were referred to [89Zr]Zr-PSMA-617 PET/CT. PET/CT imaging was performed 1 h, 24 h, 48 h, and 72 h post injection (p.i.) of 111 ± 11 MBq [89Zr]Zr-PSMA-617 (mean ± standard deviation). Normal organ distribution and dosimetry were determined. Lesions visually considered as suggestive of prostate cancer were quantitatively analyzed. RESULTS: Intense physiological uptake was observed in the salivary and lacrimal glands, liver, spleen, kidneys, intestine and urinary tract. The parotid gland received the highest absorbed dose (0.601 ± 0.185 mGy/MBq), followed by the kidneys (0.517 ± 0.125 mGy/MBq). The estimated overall effective dose for the administration of 111 MBq was 10.1 mSv (0.0913 ± 0.0118 mSv/MBq). In 6 patients, and in particular in 3 of 4 patients with negative [68Ga]Ga-PSMA-11 PET/CT, at least one prostate cancer lesion was detected in [89Zr]Zr-PSMA-617 PET/CT imaging at later time points. The majority of tumor lesions were first visible at 24 h p.i. with continuously increasing tumor-to-background ratio over time. All tumor lesions were detectable at 48 h and 72 h p.i. CONCLUSION: [89Zr]Zr-PSMA-617 PET/CT imaging is a promising new diagnostic tool with acceptable radiation exposure for patients with prostate cancer especially when [68Ga]Ga-PSMA-11 PET/CT imaging fails detecting recurrent disease. The long half-life of 89Zr enables late time point imaging (up to 72 h in our study) with increased tracer uptake in tumor lesions and higher tumor-to-background ratios allowing identification of lesions non-visible on [68Ga]Ga-PSMA-11 PET/CT imaging.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Distribuição Tecidual , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioisótopos
16.
Eur J Nucl Med Mol Imaging ; 49(6): 2064-2076, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34932154

RESUMO

RATIONALE: Prolonged in vivo evaluation of PSMA tracers could improve tumor imaging and patient selection for 177Lu-PSMA-617 and 177Lu-PSMA-I&T. In this study, we present the radiolabeling method of PSMA-617 and PSMA-I&T with the long-lived positron emitter 89Zr to enable PET imaging up to 7 days post-injection. We compared the biodistribution of 89Zr-PSMA-617 and 89Zr-PSMA-I&T to those of 177Lu-PSMA-617 and 177Lu-PSMA-I&T, respectively, in a PSMA+ xenograft model. Moreover, we provide the first human 89Zr-PSMA-617 images. MATERIALS AND METHODS: PSMA ligands were labeled with 50-55 MBq [89Zr]ZrCl4 using a two-step labeling protocol. For biodistribution, BALB/c nude mice bearing PSMA+ and PSMA- xenografts received 0.6 µg (0.6-1 MBq) of 89Zr-PSMA-617, 89Zr-PSMA-I&T, 177Lu-PSMA-617, or 177Lu-PSMA-I&T intravenously. Ex vivo biodistribution and PET/SPECT imaging were performed up to 168 h post-injection. Dosimetry was performed from the biodistribution data. The patient received 90.5 MBq 89Zr-PSMA-617 followed by PET/CT imaging. RESULTS: 89Zr-labeled PSMA ligands showed a comparable ex vivo biodistribution to its respective 177Lu-labeled counterparts with high tumor accumulation in the PSMA+ xenografts. However, using a dose estimation model for 177Lu, absorbed radiation dose in bone and kidneys differed among the 177Lu-PSMA and 89Zr-PSMA tracers. 89Zr-PSMA-617 PET in the first human patient showed high contrast of PSMA expressing tissues up to 48 h post-injection. CONCLUSION: PSMA-617 and PSMA-I&T were successfully labeled with 89Zr and demonstrated high uptake in PSMA+ xenografts, which enabled PET up to 168 h post-injection. The biodistribution of 89Zr-PSMA-I&T and 89Zr-PSMA-617 resembled that of 177Lu-PSMA-I&T and 177Lu-PSMA-617, respectively. The first patient 89Zr-PSMA-617 PET images were of high quality warranting further clinical investigation.


Assuntos
Lutécio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Linhagem Celular Tumoral , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Humanos , Ligantes , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Antígeno Prostático Específico , Radioisótopos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
17.
Mol Pharm ; 19(10): 3632-3639, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36039398

RESUMO

Tumor necrosis factor-alpha (TNF-α) neutralization has become increasingly important in the treatment of inflammatory bowel diseases (IBD). A series of monoclonal antibodies were approved in the clinic for anti-TNF-α therapy. However, a comprehensive assessment of TNF-α levels throughout the colon, which facilitates the diagnosis of IBD and predicts anti-TNF-α efficacy, remains challenging. Here, we radiolabeled infliximab with long-lived radionuclides 89Zr for immuno-positron emission tomography (PET) imaging of TNF-α in vivo. The increased TNF-α level was detected in the inflammatory colon of the dextran sodium sulfate-induced colitis mice. The immuno-PET imaging of 89Zr-desferrioxamine-infliximab reveals a high uptake (7.1 ± 0.3%ID/g) in the inflammatory colon, which is significantly higher than in the healthy control and blocked groups. The colon-to-muscle ratio reached more than 10 and was maintained at a high level for 10 h after injection. The ex vivo biodistribution study also verified the superior uptake in the inflammatory colon. This study provides an in vivo immune-PET approach to molecular imaging of the pro-inflammatory cytokine TNF-α. It is promising in diagnosing and predicting efficacy in both IBD and other autoimmune diseases.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Anticorpos Monoclonais , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/diagnóstico por imagem , Colite/tratamento farmacológico , Desferroxamina , Dextranos , Infliximab , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Distribuição Tecidual , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Zircônio
18.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500689

RESUMO

Albumin nanocolloids have been used as radiopharmaceuticals for more than 40 years. Their main use is in lymphoscintigraphy and the detection of the sentinel lymph node as part of the surgical treatment of a variety of solid tumours. The main licensed products are labelled with the gamma emitter technetium-99m. Recently, two analogues labelled with positron emitters have been reported, using gallium-68 and zirconium-89. For about 10 years, there has been interest in dual-modal agents with both radioactive and fluorescent labels to improve the localisation of the sentinel lymph node. Indocyanine green (ICG) has been the most widely used fluorescent label, largely due to its availability as a licensed agent and its ease of application. The further development of alternative radiolabels or improved fluorescent tags will require investment in the development and licensing. There is also a vast potential for the targeting of albumin nanocolloids using existing strategies, which could be promising for the development of both diagnostic and therapeutic agents.


Assuntos
Compostos Radiofarmacêuticos , Agregado de Albumina Marcado com Tecnécio Tc 99m , Biópsia de Linfonodo Sentinela , Linfocintigrafia , Corantes , Albuminas , Linfonodos
19.
Eur J Nucl Med Mol Imaging ; 48(10): 3277-3285, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33651116

RESUMO

PURPOSE: In this phase I study, we evaluated the safety, biodistribution and dosimetry of [89Zr]Zr-DFO-girentuximab (89Zr-girentuximab) PET/CT imaging in patients with suspicion of clear cell renal cell carcinoma (ccRCC). METHODS: Ten eligible patients received an intravenous administration of 37 MBq (± 10%) of 89Zr-girentuximab at mass doses of 5 mg or 10 mg. Safety was evaluated according to the NCI CTCAE (version 4.03). Biodistribution and normal organ dosimetry was performed based on PET/CT images acquired at 0.5, 4, 24, 72 and 168 h post-administration. Additionally, tumour dosimetry was performed in patients with confirmed ccRCC and visible tumour uptake on PET/CT imaging. RESULTS: 89Zr-girentuximab was administered in ten patients as per protocol. No treatment-related adverse events ≥ grade 3 were reported. 89Zr-girentuximab imaging allowed successful differentiation between ccRCC and non-ccRCC lesions in all patients, as confirmed with histological data. Dosimetry analysis using OLINDA/EXM 2.1 showed that the organs receiving the highest doses (mean ± SD) were the liver (1.86 ± 0.40 mGy/MBq), the kidneys (1.50 ± 0.22 mGy/MBq) and the heart wall (1.45 ± 0.19 mGy/MBq), with a mean whole body effective dose of 0.57 ± 0.08 mSv/MBq. Tumour dosimetry was performed in the 6 patients with histologically confirmed ccRCC resulting in a median tumour-absorbed dose of 4.03 mGy/MBq (range 1.90-11.6 mGy/MBq). CONCLUSIONS: This study demonstrates that 89Zr-girentuximab is safe and well tolerated for the administered activities and mass doses and allows quantitative assessment of 89Zr-girentuximab PET/CT imaging in patients with suspicion of ccRCC. TRIAL REGISTRATION: NCT03556046-14th of June, 2018.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Anticorpos Monoclonais , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/radioterapia , Humanos , Neoplasias Renais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Radiometria , Distribuição Tecidual
20.
Eur J Nucl Med Mol Imaging ; 48(10): 3075-3088, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33608805

RESUMO

PURPOSE: Τhis study aimed to optimize the 89Zr-radiolabelling of bintrafusp alfa investigational drug product and controls, and perform the in vitro and in vivo characterization of 89Zr-Df-bintrafusp alfa and 89Zr-Df-control radioconjugates. METHODS: Bintrafusp alfa (anti-PD-L1 human IgG1 antibody fused to TGF-ß receptor II (TGF-ßRII), avelumab (anti-PD-L1 human IgG1 control antibody), isotype control (mutated inactive anti-PD-L1 IgG1 control antibody), and trap control (mutated inactive anti-PD-L1 human IgG1 fused to active TGF-ßRII) were chelated with p-isothiocyanatobenzyl-desferrioxamine (Df). After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. In vivo biodistribution and imaging studies were performed with PET/CT to identify and quantitate 89Zr-Df-bintrafusp alfa tumour uptake in a PD-L1/TGF-ß-positive murine breast cancer model (EMT-6). Specificity of 89Zr-Df-bintrafusp alfa was assessed via a combined biodistribution and imaging experiment in the presence of competing cold bintrafusp alfa (1 mg/kg). RESULTS: Nanomolar affinities for PD-L1 were achieved with 89Zr-Df-bintrafusp alfa and 89Zr-avelumab. Biodistribution and imaging studies in PD-L1- and TGF-ß-positive EMT-6 tumour-bearing BALB/c mice demonstrated the biologic similarity of 89Zr-Df-bintrafusp alfa and 89Zr-avelumab indicating the in vivo distribution pattern of bintrafusp alfa is driven by its PD-L1 binding arm. Competition study with 1 mg of unlabelled bintrafusp alfa or avelumab co-administered with trace dose of 89Zr-labelled bintrafusp alfa demonstrated the impact of dose and specificity of PD-L1 targeting in vivo. CONCLUSION: Molecular imaging of 89Zr-Df-bintrafusp alfa biodistribution was achievable and allows non-invasive quantitation of tumour uptake of 89Zr-Df-bintrafusp alfa, suitable for use in bioimaging clinical trials in cancer patients.


Assuntos
Antígeno B7-H1 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Fatores Imunológicos , Camundongos , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA