RESUMO
BACKGROUND: Using ultraprocessed food (UPF) to replace traditional feed ingredients offers a promising strategy for enhancing food production sustainability. OBJECTIVE: To analyze the impact of salty and sugary UPF on gut microbiota, amino acids uptake, and serum analytes in growing and finishing pig. METHODS: Thirty-six Swiss Large White male castrated pigs were assigned to 3 experimental diets: 1) standard (ST), 0% UPF; 2) 30% conventional ingredients replaced by sugary (SU) UPF; and 3) 30% conventional ingredients replaced by salty (SA) UPF. The next-generation sequencing was used to characterize the fecal microbiota. Transepithelial electrical resistance and the active uptake of selected amino acids in pig jejuna were also evaluated. Data were enriched with measurements of fecal volatile fatty acids and serum urea, minerals, and insulin. All data analyses were run in R v4.0.3. The packages phyloseq, vegan, microbiome, and microbiomeutilities were used for microbiota data analysis. The remaining data were analyzed by analysis of variance using linear mixed-effects regression models. RESULTS: The UPF did not affect fecal microbiota abundance or biodiversity. The Firmicutes to Bacteroidetes ratio remained unaffected. SU-induced increase in the Anaerostipes genus suggested altered glucose metabolism, whereas SA increased the abundance of CAG-352 and p-2534-18B. No effects on fecal volatile fatty acids were observed. Assumptions of UPF negatively affecting small intestinal physiology were not supported by the measurements of transepithelial electrical resistance in pigs. Active amino acids uptake tests showed potential decrease in L-glutamate absorption in the SA compared with the SU diet. Blood serum analysis indicated no adverse effects on urea, calcium, magnesium, or potassium concentration but the SU group resulted in a lower blood serum insulin concentration at the time of blood collection. CONCLUSIONS: When incorporated at 30% into a standard growing finishing diet for pigs, UPF does not have detrimental effects on gut microbiota, intestinal integrity, and blood mineral homeostasis.
Assuntos
Ração Animal , Dieta , Grão Comestível , Microbioma Gastrointestinal , Insulina , Animais , Suínos , Masculino , Insulina/sangue , Insulina/metabolismo , Ração Animal/análise , Dieta/veterinária , Ácido Glutâmico/metabolismo , Ácido Glutâmico/sangue , Fezes/microbiologia , Fezes/química , Manipulação de AlimentosRESUMO
BACKGROUND: Interactions between the endocannabinoid system (ECS) and neurotransmitter systems might mediate the risk of developing a schizophrenia spectrum disorder (SSD). Consequently, we investigated in patients with SSD and healthy controls (HC) the relations between (1) plasma concentrations of two prototypical endocannabinoids (N-arachidonoylethanolamine [anandamide] and 2-arachidonoylglycerol [2-AG]) and (2) striatal dopamine synthesis capacity (DSC), and glutamate and y-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC). As anandamide and 2-AG might reduce the activity of these neurotransmitters, we hypothesized negative correlations between their plasma levels and the abovementioned neurotransmitters in both groups. METHODS: Blood samples were obtained from 18 patients and 16 HC to measure anandamide and 2-AG plasma concentrations. For all subjects, we acquired proton magnetic resonance spectroscopy scans to assess Glx (i.e. glutamate plus glutamine) and GABA + (i.e. GABA plus macromolecules) concentrations in the ACC. Ten patients and 14 HC also underwent [18F]F-DOPA positron emission tomography for assessment of striatal DSC. Multiple linear regression analyses were used to investigate the relations between the outcome measures. RESULTS: A negative association between 2-AG plasma concentration and ACC Glx concentration was found in patients (p = 0.008). We found no evidence of other significant relationships between 2-AG or anandamide plasma concentrations and dopaminergic, glutamatergic, or GABAergic measures in either group. CONCLUSIONS: Our preliminary results suggest an association between peripheral 2-AG and ACC Glx levels in patients.
Assuntos
Ácidos Araquidônicos , Dopamina , Endocanabinoides , Ácido Glutâmico , Glicerídeos , Alcamidas Poli-Insaturadas , Tomografia por Emissão de Pósitrons , Transtornos Psicóticos , Humanos , Endocanabinoides/sangue , Endocanabinoides/metabolismo , Masculino , Adulto , Feminino , Alcamidas Poli-Insaturadas/sangue , Alcamidas Poli-Insaturadas/metabolismo , Glicerídeos/sangue , Glicerídeos/metabolismo , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/sangue , Ácidos Araquidônicos/sangue , Ácidos Araquidônicos/metabolismo , Dopamina/metabolismo , Dopamina/sangue , Pessoa de Meia-Idade , Ácido Glutâmico/metabolismo , Ácido Glutâmico/sangue , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/sangue , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Neurotransmissores/sangue , Neurotransmissores/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/sangue , Estudos de Casos e Controles , Corpo Estriado/metabolismo , Corpo Estriado/diagnóstico por imagem , Adulto Jovem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Di-Hidroxifenilalanina/sangueRESUMO
Aberrant neuronal excitability in the anterior cingulate cortex (ACC) is implicated in cognitive and affective pain processing. Such excitability may be amplified by activated circulating immune cells, including T lymphocytes, that interact with the central nervous system. Here, we conducted a study of individuals with chronic pain using magnetic resonance spectroscopy (MRS) to investigate the clinical evidence for the interaction between peripheral immune activation and prefrontal excitatory-inhibitory imbalance. In thirty individuals with chronic musculoskeletal pain, we assessed markers of peripheral immune activation, including soluble interleukin-2 receptor alpha chain (sCD25) levels, as well as brain metabolites, including Glx (glutamate + glutamine) to GABA+ (γ-aminobutyric acid + macromolecules/homocarnosine) ratio in the ACC. We found that the circulating level of sCD25 was associated with prefrontal Glx/GABA+. Greater prefrontal Glx/GABA+ was associated with higher pain catastrophizing, evaluative pain ratings, and anxiodepressive symptoms. Further, the interaction effect of sCD25 and prefrontal Glx/GABA+ on pain catastrophizing was significant, indicating the joint association of these two markers with pain catastrophizing. Our results provide the first evidence suggesting that peripheral T cellular activation, as reflected by elevated circulating sCD25 levels, may be linked to prefrontal excitatory-inhibitory imbalance in individuals with chronic pain. The interaction between these two systems may play a role as a potential mechanism underlying pain catastrophizing. Further prospective and treatment studies are needed to elucidate the specific role of the immune and brain interaction in pain catastrophizing.
Assuntos
Dor Crônica , Subunidade alfa de Receptor de Interleucina-2 , Córtex Pré-Frontal , Humanos , Masculino , Feminino , Dor Crônica/metabolismo , Córtex Pré-Frontal/metabolismo , Adulto , Pessoa de Meia-Idade , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/sangue , Giro do Cíngulo/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/sangue , Espectroscopia de Prótons por Ressonância Magnética , Glutamina/metabolismo , Glutamina/sangue , Ácido gama-Aminobutírico/metabolismo , Catastrofização/metabolismoRESUMO
Water dispersible L-glutamic acid (Glu) functionalized cesium lead bromide perovskite quantum dots (CsPbBr3 PQDs), namely CsPbBr3@Glu PQDs were synthesized and used for the fluorescence "turn-off" detection of myoglobin (Myo). The as-prepared CsPbBr3@Glu PQDs exhibited an exceptional photoluminescence quantum yield of 25% and displayed emission peak at 520 nm when excited at 380 nm. Interestingly, the fluorescence "turn-off" analytical approach was designed to detect Myo using CsPbBr3@Glu PQDs as a simple optical probe. The developed probe exhibited a wide linear range (0.1-25 µM) and a detection limit of 42.42 nM for Myo sensing. The CsPbBr3@Glu PQDs-based optical probe provides high ability to determine Myo in serum and plasma samples.
Assuntos
Compostos de Cálcio , Césio , Ácido Glutâmico , Chumbo , Limite de Detecção , Mioglobina , Óxidos , Pontos Quânticos , Pontos Quânticos/química , Chumbo/química , Chumbo/sangue , Chumbo/análise , Mioglobina/sangue , Mioglobina/análise , Mioglobina/química , Ácido Glutâmico/sangue , Ácido Glutâmico/química , Ácido Glutâmico/análise , Compostos de Cálcio/química , Césio/química , Óxidos/química , Humanos , Titânio/química , Biomarcadores/sangue , Biomarcadores/análise , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Água/químicaRESUMO
A dual-template molecularly imprinted electrochemical sensor was developed for the simultaneous detection of serotonin (5-HT) and glutamate (Glu). First, amino-functionalized reduced graphene oxide (NRGO) was used as the modification material of a GCE to increase its electrical conductivity and specific surface area, using Glu and 5-HT as dual-template molecules and o-phenylenediamine (OPD) with self-polymerization ability as functional monomers. Through self-assembly and electropolymerization, dual-template molecularly imprinted polymers were formed on the electrode. After removing the templates, the specific recognition binding sites were exposed. The amount of NRGO, polymerization parameters, and elution parameters were further optimized to construct a dual-template molecularly imprinted electrochemical sensor, which can specifically recognize double-target molecules Glu and 5-HT. The differential pulse voltammetry (DPV) technique was used to achieve simultaneous detection of Glu and 5-HT based on their distinct electrochemical activities under specific conditions. The sensor showed a good linear relationship for Glu and 5-HT in the range 1 ~ 100 µM, and the detection limits were 0.067 µM and 0.047 µM (S/N = 3), respectively. The sensor has good reproducibility, repeatability, and selectivity. It was successfully utilized to simultaneously detect Glu and 5-HT in mouse serum, offering a more dependable foundation for objectively diagnosing and early warning of depression. Additionally, the double signal sensing strategy also provides a new approach for the simultaneous detection of both electroactive and non-electroactive substances.
Assuntos
Técnicas Eletroquímicas , Ácido Glutâmico , Grafite , Limite de Detecção , Impressão Molecular , Fenilenodiaminas , Serotonina , Serotonina/sangue , Serotonina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Animais , Ácido Glutâmico/análise , Ácido Glutâmico/sangue , Ácido Glutâmico/química , Grafite/química , Camundongos , Fenilenodiaminas/química , Depressão/diagnóstico , Depressão/sangue , Eletrodos , Biomarcadores/sangue , Biomarcadores/análise , Reprodutibilidade dos TestesRESUMO
Glutamate grabbers, such as glutamate oxaloacetate transaminase (GOT), have been proposed to prevent excitotoxicity secondary to high glutamate levels in stroke patients. However, the efficacy of blood glutamate grabbing by GOT could be dependent on the extent and severity of the disruption of the blood-brain barrier (BBB). Our purpose was to analyze the relationship between GOT and glutamate concentration with the patient's functional status differentially according to BBB serum markers (soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and leukoaraiosis based on neuroimaging). This retrospective observational study includes 906 ischemic stroke patients. We studied the presence of leukoaraiosis and the serum levels of glutamate, GOT, and sTWEAK in blood samples. Functional outcome was assessed using the modified Rankin Scale (mRS) at 3 months. A significant negative correlation between GOT and glutamate levels at admission was shown in those patients with sTWEAK levels > 2900 pg/mL (Pearson's correlation coefficient: -0.249; p < 0.0001). This correlation was also observed in patients with and without leukoaraiosis (Pearson's correlation coefficients: -0.299; p < 0.001 vs. -0.116; p = 0.024). The logistic regression model confirmed the association of higher levels of GOT with lower odds of poor outcome at 3 months when sTWEAK levels were >2900 pg/mL (OR: 0.41; CI 95%: 0.28-0.68; p < 0.0001) or with leukoaraiosis (OR: 0.75; CI 95%: 0.69-0.82; p < 0.0001). GOT levels are associated with glutamate levels and functional outcomes at 3 months, but only in those patients with leukoaraiosis and elevated sTWEAK levels. Consequently, therapies targeting glutamate grabbing might be more effective in patients with BBB dysfunction.
Assuntos
Ácido Glutâmico , AVC Isquêmico , Humanos , Ácido Glutâmico/sangue , Feminino , Masculino , Idoso , AVC Isquêmico/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Medicina de Precisão/métodos , Biomarcadores/sangue , Aspartato Aminotransferases/sangue , Leucoaraiose/sangue , Barreira Hematoencefálica/metabolismo , Citocina TWEAK/sangue , Idoso de 80 Anos ou mais , Isquemia Encefálica/sangueRESUMO
The insufficiency of human aldehyde dehydrogenase 2 (ALDH2) has been consistently associated with high blood acetaldehyde levels and impaired locomotor function during acute alcohol intoxication. The ALDH2-associated change in peripheral glutamic acid (Glu) and gamma-aminobutyric acid (GABA) levels and its correlation with pharmacokinetics and psychomotor function remain unclear. In this study, ALDH2*2 mice were used to build an acute alcohol intoxication model after intraperitoneal administration. The blood ethanol and acetaldehyde concentrations were analyzed to generate concentration-time curves at two doses of alcohol (2.0 and 4.0 g/kg). The dose of 4.0 g/kg was selected in accordance with the preliminary behavioral evaluation result to perform the following behavioral tests (e.g. the rotarod test, the open field test, and the Y-maze test), so as to assess locomotor activity, anxiety and cognitive ability. Plasma Glu and GABA levels were determined through enzyme-linked immunosorbent assays. The results suggested that the ALDH2*2 mice had highly accumulated acetaldehyde levels, impaired locomotor activity and anxiety-like emotion but unimpaired cognitive function, compared to the wild type (WT) mice. The plasma Glu level and the ratio of Glu/GABA in the alcohol-treated WT and ALDH2*2 groups decreased from 2 to 5 h after intraperitoneal administration, whereas the GABA level did not change significantly. The blood alcohol concentration in the WT and ALDH2*2 mice was positively correlated with plasma Glu level, whereas the blood acetaldehyde level was found as the opposite. We speculate that the decline degree of Glu/GABA ratio could be associated with psychomotor retardation and needs to be further investigated.
Assuntos
Intoxicação Alcoólica , Aldeído-Desidrogenase Mitocondrial , Animais , Humanos , Masculino , Camundongos , Acetaldeído/sangue , Aldeído-Desidrogenase Mitocondrial/genética , Concentração Alcoólica no Sangue , Etanol/farmacocinética , Ácido gama-Aminobutírico/sangue , Ácido Glutâmico/sangueRESUMO
An electrochemical aptamer-based sensor was developed for glutamate, the major excitatory neurotransmitter in the central nervous system. Determining glutamic acid release and glutamic acid levels is crucial for studying signal transmission and for diagnosing pathological conditions in the brain. Glutamic acid-selective oligonucleotides were isolated from an ssDNA library using the Capture-SELEX protocol in complex medium. The selection permitted the isolation of an aptamer 1d04 with a dissociation constant of 12 µM. The aptamer sequence was further used in the development of an electrochemical aptamer sensor. For this purpose, a truncated aptamer sequence named glu1 was labelled with a ferrocene redox tag at the 3'-end and immobilized on a gold electrode surface via Au-thiol bonds. Using 6-mercapto-1-hexanol as the backfill, the sensor performance was characterized by alternating current voltammetry. The glu1 aptasensor showed a limit of detection of 0.0013 pM, a wide detection range between 0.01 pM and 1 nM, and good selectivity for glutamate in tenfold diluted human serum. With this enzyme-free aptasensor, the highly selective and sensitive detection of glutamate was demonstrated, which possesses great potential for implementation in microelectrodes and for in vitro as well as in vivo monitoring of neurotransmitter release.
Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Ácido Glutâmico/sangue , Técnicas Biossensoriais/métodos , Ácido Glutâmico/análise , Hexanóis/química , Humanos , Limite de Detecção , Compostos de Sulfidrila/químicaRESUMO
We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min before the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) based on the C-terminal PDZ binding motif of PTEN for rapid tissue delivery and protection. Western blot analysis demonstrated that TAT-PTEN9c peptide significantly enhanced Akt activation in mouse cardiomyocytes in a concentration- and time-dependent manner. Mice were subjected to 8 min asystolic arrest followed by CPR, and 30 mice with successful CPR were then randomly assigned to receive either saline or TAT-PTEN9c treatment. Survival was significantly increased in TAT-PTEN9c-treated mice compared with that of saline control at 4 h after CPR. The treated mice had increased Akt phosphorylation at 30 min resuscitation with significantly decreased sorbitol content in heart or brain tissues and reduced release of taurine and glutamate in blood, suggesting improved glucose metabolism. In an isolated rat heart Langendorff model, direct effects of TAT-PTEN9c on cardiac function were measured for 20 min following 20 min global ischemia. Rate pressure product was reduced by >20% for both TAT vehicle and nontreatment groups following arrest. Cardiac contractile function was completely recovered with TAT-PTEN9c treatment given at the start of reperfusion. We conclude that TAT-PTEN9c enhances Akt activation and decreases glucose shunting to the polyol pathway in critical organs, thereby preventing osmotic injury and early cardiovascular collapse and death.NEW & NOTEWORTHY We have designed a cell-permeable peptide, TAT-PTEN9c, to improve cardiac arrest survival. It blocked endogenous PTEN binding to its adaptor and enhanced Akt signaling in mouse cardiomyocytes. It improved mouse survival after cardiac arrest, which is related to improved glucose metabolism and reduced glucose shunting to sorbitol in critical organs.
Assuntos
Cardiotônicos/uso terapêutico , Parada Cardíaca/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Ácido Glutâmico/sangue , Parada Cardíaca/metabolismo , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Taurina/sangueRESUMO
BACKGROUND AND AIMS: The progression of nonalcoholic fatty liver disease (NAFLD) into severe histological forms (steatohepatitis - NASH) is paralleled by the occurrence of complex molecular processes. Mitochondrial dysfunction is a hallmark feature of advanced disease. Mitochondrially encoded cytochrome B (cytochrome b, MT-CYB), a member of the oxidative phosphorylation system, is a key component of the respirasome supercomplex. Here, we hypothesized that NAFLD severity is associated with liver tissue cytochrome b mutations and damaged mitochondrial DNA (mtDNA). METHODS: We included 252 liver specimens of NAFLD patients - in whom histological disease ranged from mild to severe - which were linked to clinical and biochemical information. Tissue molecular explorations included MT-CYB sequencing and analysis of differential mtDNA damage. Profiling of circulating Krebs cycle metabolites and global liver transcriptome was performed in a subsample of patients. Tissue levels of 4-hydroxynonenal - a product of lipid peroxidation and 8-hydroxy-2'-deoxyguanosine, a marker of oxidative damage - were measured. RESULTS: Compared to simple steatosis, NASH is associated with a higher level of MT-CYB variance, 12.1 vs. 15.6 substitutions per 103 bp (P = 5.5e-10). The burden of variants was associated with increased levels of 2-hydroxyglutarate, branched-chain amino acids, and glutamate, and changes in the global liver transcriptome. Liver mtDNA damage was associated with advanced disease and inflammation. NAFLD severity was associated with increased tissue levels of DNA oxidative adducts and lipid peroxyl radicals. CONCLUSION: NASH is associated with genetic alterations of the liver cellular respirasome, including high cytochrome b variation and mtDNA damage, which may result in broad cellular effects.
Assuntos
Citocromos b/genética , Dano ao DNA , DNA Mitocondrial , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/sangue , Adulto , Idoso , Aldeídos/sangue , Aminoácidos de Cadeia Ramificada/sangue , Progressão da Doença , Ácido Glutâmico/sangue , Glutaratos/sangue , Humanos , Peroxidação de Lipídeos , Pessoa de Meia-Idade , Mutação , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Índice de Gravidade de Doença , TranscriptomaRESUMO
High glutamate levels after head trauma or cerebral ischemia have neurotoxic effects. The objective of the present study was to evaluate the efficacy of hemodialysis to remove glutamate from the blood and to assess the behavior of this small molecule. Ten patients with end-renal disease on hemodialysis were included in the study. Glutamate clearance was evaluated within the first hour of hemodialysis on a midweek dialysis day on five patients who underwent low flux hemodialysis, whereas the other five patients underwent highly efficient hemodialysis (high flux hemodialysis on one day and online hemodiafiltration on another day). Glutamate clearance with hemodialysis was very effective and did not show any differences between the techniques (low flux: 214 [55], high flux: 204 [37], online hemodiafiltration: 202 [16], median (interquartile range), P = .7). Glutamate clearance was almost equivalent to vascular access plasma flow and it was not affected by dialyzer permeability or ultrafiltration rate. After a hemodialysis session, a significant decrease in glutamate blood level was observed (prehemodialysis: 59.7 [36.1], posthemodialysis 37.0 [49.2], P = .005). Dialysis performed under fasting condition showed higher glutamate reduction rate (60%) than that under feeding condition (20%). Hemodialysis may be an effective method to reduce glutamate blood levels, and the molecule clearance does not differ between the different techniques used. Considering previous results in experimental models, hemodialysis without hemodynamic stress, could be considered for reducing glutamate neurotoxic effects in acute ischemic strokes of patients in chronic hemodialysis programs.
Assuntos
Ácido Glutâmico/metabolismo , Hemodiafiltração/métodos , Diálise Renal/métodos , Idoso , Isquemia Encefálica/terapia , Jejum/sangue , Feminino , Ácido Glutâmico/sangue , Humanos , AVC Isquêmico/terapia , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-IdadeRESUMO
Osteoarthritis is a common multifactorial chronic disease that occurs in articular cartilage, subchondral bone, and periarticular tissue. The pathogenesis of OA is still unclear. To investigate the differences in serum metabolites between OA and the control group, liquid chromatography/mass spectrometry (LC/MS)-based metabolomics was used. To reveal the pathogenesis of OA, 12 SD male rats were randomly divided into control and OA groups using collagenase to induce OA for modeling, and serum was collected 7 days after modeling for testing. The OA group was distinguished from the control group by principal component analysis and orthogonal partial least squares-discriminant analysis, and six biomarkers were finally identified. These biomarkers were metabolized through tryptophan metabolism, glutamate metabolism, nitrogen metabolism, spermidine metabolism, and fatty acid metabolism pathways. The study identified metabolites that may be altered in OA, suggesting a role in OA through relevant metabolic pathways. Metabolomics, as an important tool for studying disease mechanisms, provides useful information for studying the metabolic mechanisms of OA.
Assuntos
Biomarcadores/sangue , Cartilagem Articular/metabolismo , Metabolômica , Osteoartrite/sangue , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cromatografia Líquida , Colagenases/toxicidade , Modelos Animais de Doenças , Ácidos Graxos/sangue , Ácido Glutâmico/sangue , Humanos , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma/genética , Nitrogênio/sangue , Osteoartrite/induzido quimicamente , Osteoartrite/genética , Osteoartrite/metabolismo , Ratos , Espermidina/sangue , Triptofano/sangueRESUMO
Comparative analysis of blood sera from women with alcohol dependence and depressive disorders or from conditionally healthy women revealed reduced level of antibodies to dopamine, norepinephrine, serotonin, glutamate, and GABA in blood serum in women with dysthymic disorder and a depressive episode and their increased content in women with alcohol dependence in combination with depressive disorders.
Assuntos
Alcoolismo/imunologia , Autoanticorpos/sangue , Transtorno Depressivo/imunologia , Transtorno Distímico/imunologia , Alcoolismo/sangue , Alcoolismo/complicações , Alcoolismo/fisiopatologia , Estudos de Casos e Controles , Transtorno Depressivo/sangue , Transtorno Depressivo/complicações , Transtorno Depressivo/fisiopatologia , Dopamina/sangue , Transtorno Distímico/sangue , Transtorno Distímico/complicações , Transtorno Distímico/fisiopatologia , Feminino , Ácido Glutâmico/sangue , Humanos , Pessoa de Meia-Idade , Norepinefrina/sangue , Serotonina/sangue , Ácido gama-Aminobutírico/sangueRESUMO
BACKGROUND: Although the association between glutamate and glutamine in relation to cardiometabolic disorders has been evaluated, the role of these metabolites in the development of atrial fibrillation (AF) and heart failure (HF) remains unknown. OBJECTIVES: We examined associations of glutamate, glutamine, and the glutamine-to-glutamate ratio with AF and HF incidence in a Mediterranean population at high cardiovascular disease (CVD) risk. METHODS: The present study used 2 nested case-control studies within the PREDIMED (Prevención con Dieta Mediterránea) study. During â¼10 y of follow-up, there were 509 AF incident cases matched to 618 controls and 326 HF incident cases matched to 426 controls. Plasma concentrations of glutamate and glutamine were semiquantitatively profiled with LC-tandem MS. ORs were estimated with multivariable conditional logistic regression models. RESULTS: In fully adjusted models, per 1-SD increment, glutamate was associated with a 29% (95% CI: 1.08, 1.54) increased risk of HF and glutamine-to-glutamate ratio with a 20% (95% CI: 0.67, 0.94) decreased risk. Glutamine-to-glutamate ratio was also inversely associated with HF risk (OR per 1-SD increment: 0.80; 95% CI: 0.67, 0.94) when comparing extreme quartiles. Higher glutamate concentrations were associated with a worse cardiometabolic risk profile, whereas a higher glutamine-to-glutamate ratio was associated with a better cardiometabolic risk profile. No associations between the concentrations of these metabolites and AF were observed. CONCLUSIONS: Our findings suggest that high plasma glutamate concentrations possibly resulting from alterations in the glutamate-glutamine cycle may contribute to the development of HF in Mediterranean individuals at high CVD risk.This trial was registered at www.isrctn.com as ISRCTN35739639.
Assuntos
Fibrilação Atrial/sangue , Dieta Mediterrânea , Ácido Glutâmico/sangue , Glutamina/sangue , Insuficiência Cardíaca/sangue , Idoso , Glicemia , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Fatores de RiscoRESUMO
Glutamate is a biomarker for many nervous system diseases, and sensitively detecting glutamate is meaningful in the clinic. Therefore, a unique 3D framework of Cd-MOF (1) is synthesized and characterized. A single-crystal X-ray study reveals that it is a two-fold interpenetration (4,4)-connected framework with a PtS topology, where a large 1D rhombic channel with a size of 8 × 14 Å exists and the total potential void volume can reach 62%. Luminescence results demonstrate that 1 has good luminescence stability and can sensitively detect glutamate in water with a detection limit of 1.15 × 10-7 mol/L, which makes it the most sensitive MOF-based luminescence sensor of glutamate to date. More importantly, it also can serve as a luminescence sensor to detect glutamate in serum, and the quenching concentration needs to be only 43.1 µmol/L, which is much lower than the harmful level of glutamate (400 µmol/L) in glioma patients' blood. Compound 1 can be used at least five cycles. These results show that 1 has a potential application in monitoring glutamate in clinical scenarios.
Assuntos
Ácido Glutâmico/sangue , Substâncias Luminescentes/química , Estruturas Metalorgânicas/química , Animais , Biomarcadores/sangue , Cádmio/química , Bovinos , Limite de Detecção , Luminescência , Medições LuminescentesRESUMO
Glutamic acid (Glu) is the most abundant excitatory neurotransmitter in the central nervous system, and an elevated level of Glu may indicate some neuropathological diseases. Herein, three isomorphic microporous lanthanide metal-organic frameworks (MOFs) [(CH3)2NH2]2[Ln6(µ3-OH)8(BDC-OH)6(H2O)6]·(solv)x (ZJU-168; ZJU = Zhejiang University, H2BDC-OH = 2-hydroxyterephthalic acid, Ln = Eu, Tb, Gd) were designed for the detection of Glu. ZJU-168(Eu) and ZJU-168(Tb) suspensions simultaneously produce the characteristic emission bands of both lanthanide ions and ligands. When ZJU-168(Eu) and ZJU-168(Tb) suspensions exposed to Glu, the fluorescence intensity of ligands increases while the emission of lanthanide ions is almost unchanged. By utilizing the emission of ligands as the detected signal and the emission of lanthanide ions as the internal reference, an internal calibrated fluorescence sensor for Glu was obtained. There is a good linear relationship between fluorescence intensity ratio and Glu concentration in a wide range with the detection limit of 3.6 µM for ZJU-168(Tb) and 4.3 µM for ZJU-168(Eu). Major compounds present in blood plasma have no interference for the detection of Glu. Furthermore, a convenient analytical device based on a one-to-two logic gate was constructed for monitoring Glu. These establish ZJU-168(Tb) as a potential turn-on, ratiometric, and colorimetric fluorescent sensor for practical detection of Glu.
Assuntos
Corantes Fluorescentes/química , Ácido Glutâmico/sangue , Estruturas Metalorgânicas/química , Neurotransmissores/sangue , Biomarcadores/sangue , Colorimetria , Európio/química , Európio/toxicidade , Corantes Fluorescentes/toxicidade , Gadolínio/química , Gadolínio/toxicidade , Limite de Detecção , Lógica , Estruturas Metalorgânicas/toxicidade , Espectrometria de Fluorescência , Térbio/química , Térbio/toxicidadeRESUMO
Glutamate represents the main excitatory neurotransmitter in the mammalian brain; however, its excessive elevation in the extracellular space is cytotoxic and can result in neuronal death. The ischemia initiated brain damage reflects changes in glutamate concentration in peripheral blood. This paper investigated the role of the brain in blood efflux of the glutamate in an improved tolerance of the brain tissue to ischemic conditions. In the rat model of focal brain ischemia, the neuroprotection was initiated by rapid remote ischemic preconditioning (rRIPC). Our results confirmed a strong neuroprotective effect of rRIPC. We observed reduced infarction by about 78% related to improved neuronal survival by about 70% in the ischemic core. The level of tissue glutamate in core and penumbra dropped significantly and decreased to control value also in the core region of the contralateral hemisphere. Despite significant improvement of blood-brain barrier integrity (by about 76%), the additional gain of glutamate content in the peripheral blood was caused by rRIPC. Based on our results, we can assume that neuroprotection mediated by rapid remote ischemic preconditioning could lie in the regulated, whole-brain release of glutamate from nerve tissue to the blood, which preserves neurons from the exposure to glutamate toxicity and results in reduced infarction.
Assuntos
Isquemia Encefálica/metabolismo , Ácido Glutâmico/metabolismo , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Morte Celular/efeitos dos fármacos , Ácido Glutâmico/sangue , Ácido Glutâmico/toxicidade , Precondicionamento Isquêmico/métodos , Masculino , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD-NO) compared to those with obesity (NAFLD-Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD-NO and 15 NAFLD-Ob) and 20 CTs without obesity, by gas chromatography-mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep-IR; Hep-IR = endogenous glucose production × insulin), and the new glutamate-serine-glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD-Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD-NO subjects compared to CTs. Glutamate, tyrosine, and the GSG-index were correlated with Hep-IR. The GSG-index correlated with liver enzymes, in particular, gamma-glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG-index, while only the new GSG-index was able to discriminate fibrosis F3-4 from F0-2 in this cohort. CONCLUSION: Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG-index is a possible marker of severity of liver disease independent of body mass index. (Hepatology 2018;67:145-158).
Assuntos
Aminoácidos/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Adulto , Fatores Etários , Biomarcadores/sangue , Estudos de Casos e Controles , Progressão da Doença , Feminino , Ácido Glutâmico/sangue , Humanos , Resistência à Insulina , Isoleucina/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Prognóstico , Valores de Referência , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Tirosina/sangueRESUMO
OBJECTIVE: Blood/brain-glutamate grabbing is an emerging concept in the treatment of acute ischemic stroke, where essentially the deleterious effects of glutamate after ischemia are ameliorated by coaxing glutamate to enter the bloodstream and thus reducing its concentration in the brain. Aiming to demonstrate the clinical efficacy of blood glutamate grabbers in patients with stroke, in this study, we resorted to a drug-repositioning strategy for the discovery of new glutamate-grabbing drugs. METHODS: The glutamate-grabbing ability of 1,120 compounds (90% of which were drugs approved by the US Food and Drug Administration) was evaluated during an in vitro high-throughput screening campaign. Subsequently, the protective efficacy of the selected drugs was probed in an ischemic animal model and finally tested in stroke patients. RESULTS: Riboflavin (vitamin B2 ) was identified as the main hit compound. In ischemic animal models treated with riboflavin (1mg/kg), it was confirmed that blood glutamate reduction was associated with a significant reduction of infarct size. These results led to a randomized, double-blind, phase IIb clinical trial with patients with stroke. Fifty patients were randomized to 1 of the 2 study arms: the control group (placebo) and the experimental group (20mg of riboflavin [vitamin B2 Streuli@ ). Decrease in glutamate concentration was significantly greater (p < 0.029) in the treated group. Comparative analysis of the percentage improvement on the National Institutes of Health Stroke Scale score at discharge was slightly higher in the riboflavin-treated group than in the placebo group (33.7 ± 43.7 vs 48.9 ± 42.4%, p = 0.050). INTERPRETATION: This translational study represents the first human demonstration of the efficacy of blood glutamate grabbers in the treatment of patients with stroke, paving the way for the development of a promising novel protective therapy. Ann Neurol 2018;84:260-273.
Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/sangue , Ácido Glutâmico/sangue , Acidente Vascular Cerebral/sangue , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/tratamento farmacológico , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Complexo Vitamínico B/farmacologia , Complexo Vitamínico B/uso terapêuticoRESUMO
BACKGROUND: Serum haptoglobin (Hp) has been closely associated with cardio-cerebrovascular diseases. We investigated a metabolic profile associated with circulating Hp and carotid arterial functions via a targeted metabolomics approach to provide insight into potential mechanisms. METHODS: A total of 240 participants, including 120 patients with type 2 diabetes mellitus (T2DM) and 120 non-diabetes mellitus (non-DM) subjects were recruited in this study. Targeted metabolic profiles of serum metabolites were determined using an AbsoluteIDQ™ p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). Ultrasound of the bilateral common carotid artery was used to measure intima-media thickness and inter-adventitial diameter. Serum Hp levels were tested by enzyme-linked immunosorbent assay. RESULTS: Serum Hp levels in T2DM patients and non-DM subjects were 103.40 (72.46, 131.99) mg/dL and 100.20 (53.99, 140.66) mg/dL, respectively. Significant differences of 19 metabolites and 17 metabolites were found among serum Hp tertiles in T2DM patients and non-DM subjects, respectively (P < 0.05). Of these, phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2) was the common metabolite observed in two populations, which was associated with the serum Hp groups and lipid traits (P < 0.05). Furthermore, the metabolite ratios of two acidic amino acids, including aspartate to PC ae C32:2 (Asp/PC ae C32:2) and glutamate to PC ae C32:2 (Glu/PC ae C32:2) were correlated with serum Hp, carotid arterial functions and other biochemical index in both populations significantly (P < 0.05). CONCLUSIONS: Targeted metabolomics analyses might provide a new insight into the potential mechanisms underlying the association between serum Hp and carotid arterial functions.