RESUMO
Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.
Assuntos
Dolicóis , Dolicóis/metabolismo , Dolicóis/biossíntese , Humanos , Glicosilação , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Masculino , Mutação de Sentido Incorreto , FemininoRESUMO
Steroid 5α reductase 2 (SRD5A2) converts testosterone to dihydrotestosterone and is crucial for prostatic development. 5α reductase inhibitors (5ARI) reduce prostate size in benign prostate hyperplasia (BPH) and ameliorate lower urinary tract symptoms secondary to BPH. However, the mechanisms of 5ARI functioning are still not fully understood. Here, we used a Srd5a2-/- mouse model and employed single-cell RNA sequencing to explore the impact of SRD5A2 absence on prostate cellular heterogeneity. Significant alterations in luminal epithelial cell (LE) populations were observed, alongside an increased proportion and proliferative phenotype of estrogen receptor 1 (ESR1)+ LE2 cells, following an SRD5A2-independent ESR1 differentiation trajectory. LE2 cells exhibited enhanced estrogen response gene signatures, suggesting an alternative pathway for prostate growth when SRD5A2 is absent. Human prostate biopsy analysis revealed an inverse correlation between the expressions of SRD5A2 and LE2 markers (ESR1/PKCα), and an inverse correlation between SRD5A2 and the clinical efficiency of 5ARI. These findings provide insights into 5ARI resistance mechanisms and potential alternative therapies for BPH-related lower urinary tract symptoms. © 2024 The Pathological Society of Great Britain and Ireland.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Células Epiteliais , Receptor alfa de Estrogênio , Proteínas de Membrana , Próstata , Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Inibidores de 5-alfa Redutase/farmacologia , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Sintomas do Trato Urinário Inferior/patologia , Sintomas do Trato Urinário Inferior/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout , Próstata/patologia , Próstata/metabolismo , Hiperplasia Prostática/patologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/genéticaRESUMO
N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Anormalidades Múltiplas/metabolismo , Dolicóis/metabolismo , Deficiência Intelectual/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Animais , Butadienos/metabolismo , Consanguinidade , Embrião de Mamíferos/metabolismo , Estudo de Associação Genômica Ampla , Glicosilação , Hemiterpenos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Resposta a Proteínas não DobradasRESUMO
SRD5A3-CDG is a congenital disorder of glycosylation (CDG) resulting from pathogenic variants in SRD5A3 and follows an autosomal recessive inheritance pattern. The enzyme encoded by SRD5A3, polyprenal reductase, plays a crucial role in synthesizing lipid precursors essential for N-linked glycosylation. Despite insights from functional studies into its enzymatic function, there remains a gap in understanding global changes in patient cells. We sought to identify N-glycoproteomic and proteomic signatures specific to SRD5A3-CDG, potentially aiding in biomarker discovery and advancing our understanding of disease mechanisms. Using tandem mass tag (TMT)-based relative quantitation, we analyzed fibroblasts derived from five patients along with control fibroblasts. N-glycoproteomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 3,047 glycopeptides with 544 unique N-glycosylation sites from 276 glycoproteins. Of these, 418 glycopeptides showed statistically significant changes with 379 glycopeptides decreased (P < 0.05) in SRD5A3-CDG patient-derived samples. These included high mannose, complex and hybrid glycan-bearing glycopeptides. High mannose glycopeptides from protocadherin Fat 4 and integrin alpha-11 and complex glycopeptides from CD55 were among the most significantly decreased glycopeptides. Proteomics analysis led to the identification of 5,933 proteins, of which 873 proteins showed statistically significant changes. Decreased proteins included cell surface glycoproteins, various mitochondrial protein populations and proteins involved in the N-glycosylation pathway. Lysosomal proteins such as N-acetylglucosamine-6-sulfatase and procathepsin-L also showed reduced levels of phosphorylated mannose-containing glycopeptides. Our findings point to disruptions in glycosylation pathways as well as energy metabolism and lysosomal functions in SRD5A3-CDG, providing clues to improved understanding and management of patients with this disorder.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Defeitos Congênitos da Glicosilação , Fibroblastos , Proteínas de Membrana , Proteômica , Humanos , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/deficiência , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/genética , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Significant differences in immune responses, prevalence or susceptibility of diseases and treatment responses have been described between males and females. Despite this, sex-differentiation analysis of the genetic architecture of inflammatory proteins is largely unexplored. We performed sex-stratified meta-analysis after protein quantitative trait loci (pQTL) mapping using inflammatory biomarkers profiled using targeted proteomics (Olink inflammatory panel) of two population-based cohorts of Europeans. RESULTS: Even though, around 67% of the pQTLs demonstrated shared effect between sexes, colocalization analysis identified two loci in the males (LINC01135 and ITGAV) and three loci (CNOT10, SRD5A2, and LILRB5) in the females with evidence of sex-dependent modulation by pQTL variants. Furthermore, we identified pathways with relevant functions in the sex-biased pQTL variants. We also showed through cross-validation that the sex-specific pQTLs are linked with sex-specific phenotypic traits. CONCLUSION: Our study demonstrates the relevance of genetic sex-stratified analysis in the context of genetic dissection of protein abundances among individuals and reveals that, sex-specific pQTLs might mediate sex-linked phenotypes. Identification of sex-specific pQTLs associated with sex-biased diseases can help realize the promise of individualized treatment.
Assuntos
Proteínas , Locos de Características Quantitativas , Masculino , Feminino , Humanos , Proteínas/genética , Fenótipo , Biomarcadores , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Receptores Imunológicos/genética , Antígenos CDRESUMO
RATIONALE: In inflammatory diseases such as rheumatoid arthritis (RA), steroid metabolism is a central component mediating the actions of immuno-modulatory glucocorticoids and sex steroids. However, the regulation and function of cellular steroid metabolism within key leukocyte populations such as macrophages remain poorly defined. In this study, the inflammatory regulation of global steroid metabolism was assessed in RA macrophages. METHODS: Bulk RNA-seq data from RA synovial macrophages was used to assess transcripts encoding key enzymes in steroid metabolism and signalling. Changes in metabolism were assessed in synovial fluids, correlated to measures of disease activity and functionally validated in primary macrophage cultures. RESULTS: RNA-seq revealed a unique pattern of differentially expressed genes, including changes in genes encoding the enzymes 11ß-HSD1, SRD5A1, AKR1C2 and AKR1C3. These correlated with disease activity, favouring increased glucocorticoid and androgen levels. Synovial fluid 11ß-HSD1 activity correlated with local inflammatory mediators (TNFα, IL-6, IL-17), whilst 11ß-HSD1, SRD5A1 and AKR1C3 activity correlated with systemic measures of disease and patient pain (ESR, DAS28 ESR, global disease activity). Changes in enzyme activity were evident in inflammatory activated macrophages in vitro and revealed a novel androgen activating role for 11ß-HSD1. Together, increased glucocorticoids and androgens were able to suppress inflammation in macrophages and fibroblast-like-synoviocytes. CONCLUSIONS: This study underscores the significant increase in androgen and glucocorticoid activation within inflammatory polarized macrophages of the synovium, contributing to local suppression of inflammation. The diminished profile of inactive steroid precursors in postmenopausal women may contribute to disturbances in this process, leading to increased disease incidence and severity.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Artrite Reumatoide , Inflamação , Macrófagos , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Inflamação/metabolismo , Inflamação/imunologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Líquido Sinovial/metabolismo , Líquido Sinovial/imunologia , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Feminino , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Células Cultivadas , Glucocorticoides/metabolismo , Esteroides/metabolismo , Regulação da Expressão Gênica , Hidroxiesteroide DesidrogenasesRESUMO
Hypospadias, an oft-occurring penis anomaly, ranks among neonatal's foremost birth defects. The SRD5A2 can affect male reproductive system development and is abnormally expressed in its epithelial cells. This study exploration aimed at understanding the role of SRD5A2 in the development of hypospadias from a molecular perspective. SRD5A2 levels in hypospadias primary cells were analyzed by Western blot, while targeted interaction with miR-1199-5p was ascertained by dual-luciferase gene reporter assay. In vitro biological experiments were used to confirm the biological function of SRD5A2 in hypospadias. SRD5A2 expression was significantly upregulated, and miR-1199-5p expression was significantly downregulated in hypospadias primary cells. Intervention of SRD5A2 expression can affect cell proliferation, migration, invasion, EMT, and the expression of cell cycle-related proteins. Additionally, we found that SRD5A2 is regulated by upstream miR-1199-5p and can enhance the effect of SRD5A2 on hypospadias cells. Conclusions Silencing SRD5A2 promotes cell proliferation, invasion, and migration blocks the cell cycle at the G1 phase, and simultaneously promotes EMT, cell cycle, and cell proliferation-related protein expression. The biological function of SRD5A2 in hypospadias cells is regulated by miR-1199-5p. SRD5A2 may be an effective therapeutic target for hypospadias.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Hipospadia , Proteínas de Membrana , MicroRNAs , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Hipospadia/genética , Hipospadia/patologia , Hipospadia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
18-ß-Glycyrrhetinic acid, a major component of licorice, stimulated the proliferation of both dermal papilla cells and outer root sheath cells isolated from human hair follicles. Thus, suggesting that this compound promotes hair growth. Furthermore, this compound inhibited the activity of testosterone 5α-reductase, an enzyme responsible for converting androgen to dihydroandrogen, with an IC50 of 137.1 µM. 18-ß-Glycyrrhetinic acid also suppressed the expression of transforming growth factor-ß1 (TGF-ß1), which shifts the hair cycle from the anagen phase to the telogen phase. It suggested that this compound may prolong the anagen phase. Based on these findings, this compound could be a potentially effective treatment for androgenetic alopecia.
Assuntos
Inibidores de 5-alfa Redutase , Proliferação de Células , Ácido Glicirretínico , Folículo Piloso , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/análogos & derivados , Humanos , Proliferação de Células/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/citologia , Inibidores de 5-alfa Redutase/farmacologia , Células Cultivadas , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Alopecia/tratamento farmacológico , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genéticaRESUMO
There have been no reports comparing neonatal external genitalia of 5α-reductase deficiency (5αRD) with those of other 46,XY differences of sex differentiation (DSD). This study enrolled 31 Japanese cases of 46,XY DSD whose external genitalia was examined during the neonatal period; four were diagnosed as 5αRD and 15 were defined as non-5αRD by genetic analysis of SRD5A2 or urinary steroid metabolites. We compared the following characteristics between 5αRD and non-5αRD groups, adjusting the severity of undermasculinization of the external genitalia: stretched penile length (SPL), glans width, location of the external urethral opening, and proportion of undescended testis. The external genitalia of all the 5αRD cases were Quigley classification grade 2 or 3. We compared the phenotypes between the four 5αRD cases and 11 non-5αRD cases with grade 2 or 3. The median (range) of SPL in the 5αRD group (14 mm [11-16]) was significantly lower than that in the non-5αRD group (22 mm [15-29]) (p = 0.003). An SPL cut-off value of <15 mm yielded a sensitivity of 50% (95% confidence interval [CI]; 7-93%) and specificity of 100% (95% CI, 72-100%) for discriminating between the groups. The median glans width, location of the external urethral opening, and proportion of undescended testis were not significantly different between the groups. The SPL of 5αRD in Quigley classification grade 2 or 3 was significantly shorter than that of other 46,XY DSDs with the equivalent grade.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Transtorno 46,XY do Desenvolvimento Sexual , Genitália Masculina , Humanos , Masculino , Recém-Nascido , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Genitália Masculina/anormalidades , Transtorno 46,XY do Desenvolvimento Sexual/genética , Pênis/anormalidades , Fenótipo , Japão , Proteínas de MembranaRESUMO
OBJECTIVES: To investigate the value of the human chorionic gonadotropin (hCG) stimulation test in the diagnosis of disorder of sexual development (DSD) in children. METHODS: A retrospective analysis was conducted on 132 children with DSD. According to the karyotype, they were divided into three groups: 46,XX group (n=10), 46,XY group (n=87), and sex chromosome abnormality group (n=35). The above groups were compared in terms of sex hormone levels before and after hCG stimulation test, and the morphological manifestation of the impact of testicular tissue on the results of the hCG stimulation test was analyzed. RESULTS: There was no significant difference in the multiple increase of testosterone after stimulation among the three groups (P>0.05). In the 46,XY group, the children with 5α-reductase type 2 deficiency had a testosterone-to-dihydrotestosterone ratio higher than that of the 46,XY DSD children with other causes. Morphological analysis showed that DSD children with testicular tissue demonstrated a significantly higher multiple increase in testosterone after stimulation compared to children without testicular tissue (P<0.05). CONCLUSIONS: The hCG stimulation test has an important value in assessing the presence and function of testicular interstitial cells in children with different types of DSD, and it is recommended to perform the hCG stimulation test for DSD children with unclear gonadal type.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , Transtorno 46,XY do Desenvolvimento Sexual , Hipospadia , Desenvolvimento Sexual , Erros Inatos do Metabolismo de Esteroides , Testosterona , Criança , Humanos , Estudos Retrospectivos , Gonadotropina CoriônicaRESUMO
Genetic variations represented by single-nucleotide polymorphisms (SNPs) could be helpful for choosing an effective treatment for patients with prostate cancer. This study investigated the prognostic and predictive values of SNPs associated with the prognoses of pharmacotherapy for prostate cancer through their pharmacological mechanisms. Patients treated with docetaxel or androgen receptor pathway inhibitors (ARPIs), such as abiraterone and enzalutamide, for castration-resistant prostate cancer were included. The SNPs of interest were genotyped for target regions. The prognostic and predictive values of the SNPs for time to progression (TTP) were examined using the Cox hazard proportional model and interaction test, respectively. Rs1045642 in ABCB1, rs1047303 in HSD3B1, rs1856888 in HSD3B1, rs523349 in SRD5A2, and rs34550074 in SLCO2A1 were differentially associated with TTP between docetaxel chemotherapy and ARPI treatment. In addition to rs4775936 in CYP19A1, rs1128503 in ABCB1 and rs1077858 in SLCO2B1 might be differentially associated with TTP between abiraterone and enzalutamide treatments. Genetic predictive models using these SNPs showed a differential prognosis for treatments. This study identified SNPs that could predict progression as well as genetic models that could predict progression when patients were treated with docetaxel versus ARPI and abiraterone versus enzalutamide. The use of genetic predictive models is expected to be beneficial in selecting the appropriate treatment for the individual patient.
Assuntos
Docetaxel , Transportadores de Ânions Orgânicos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Antagonistas de Receptores de Andrógenos/uso terapêutico , Androgênios , Docetaxel/uso terapêutico , Variação Genética , Proteínas de Membrana/genética , Nitrilas/uso terapêutico , Transportadores de Ânions Orgânicos/genética , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Taxoides , Resultado do TratamentoRESUMO
Disorders of sex development (DSD) are a group of clinical conditions with variable presentation and genetic background. Females with or without development of secondary sexual characters and presenting with primary amenorrhea (PA) and a 46,XY karyotype are one of the classified groups in DSD. In this study, we aimed to determine the genetic mutations in 25 females with PA and a 46,XY karyotype to show correlations with their phenotypes. Routine Sanger sequencing with candidate genes like SRY, AR, SRD5A2, and SF1, which are mainly responsible for 46,XY DSD in adolescent females, was performed. In a cohort of 25 patients of PA with 46,XY DSD, where routine Sanger sequencing failed to detect the mutations, next-generation sequencing of a targeted gene panel with 81 genes was used for the molecular diagnosis. The targeted sequencing identified a total of 21 mutations including 8 novel variants in 20 out of 25 patients with DSD. The most frequently identified mutations in our series were in AR (36%), followed by SRD5A2 (20%), SF1 (12%), DHX37 (4%), HSD17B3 (4%), and DMRT2 (4%). We could not find any mutation in the DSD-related genes in five (20%) patients due to complex molecular mechanisms in 46,XY DSD, highlighting the possibility of new DSD genes which are yet to be discovered in these disorders. In conclusion, genetic testing, including cytogenetics and molecular genetics, is important for the diagnosis and management of 46,XY DSD cases.
Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Disgenesia Gonadal 46 XY , Feminino , Humanos , Transtorno 46,XY do Desenvolvimento Sexual/genética , Disgenesia Gonadal 46 XY/genética , Mutação , Testes Genéticos , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genéticaRESUMO
BACKGROUND: Forty-six ,XY Differences/Disorders of Sex Development (DSD) are characterized by a broad phenotypic spectrum ranging from typical female to male with undervirilized external genitalia, or more rarely testicular regression with a typical male phenotype. Despite progress in the genetic diagnosis of DSD, most 46,XY DSD cases remain idiopathic. METHODS: To determine the genetic causes of 46,XY DSD, we studied 165 patients of Tunisian ancestry, who presented a wide range of DSD phenotypes. Karyotyping, candidate gene sequencing, and whole-exome sequencing (WES) were performed. RESULTS: Cytogenetic abnormalities, including a high frequency of sex chromosomal anomalies (85.4%), explained the phenotype in 30.9% (51/165) of the cohort. Sanger sequencing of candidate genes identified a novel pathogenic variant in the SRY gene in a patient with 46,XY gonadal dysgenesis. An exome screen of a sub-group of 44 patients with 46,XY DSD revealed pathogenic or likely pathogenic variants in 38.6% (17/44) of patients. CONCLUSION: Rare or novel pathogenic variants were identified in the AR, SRD5A2, ZNRF3, SOX8, SOX9 and HHAT genes. Overall our data indicate a genetic diagnosis rate of 41.2% (68/165) in the group of 46,XY DSD.
Assuntos
Aciltransferases , Disgenesia Gonadal 46 XY , Fatores de Transcrição SOXE , Desenvolvimento Sexual , Testículo , Ubiquitina-Proteína Ligases , Feminino , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Aciltransferases/genética , Disgenesia Gonadal 46 XY/genética , Proteínas de Membrana/genética , Mutação , Fenótipo , Diferenciação Sexual , Desenvolvimento Sexual/genética , Fatores de Transcrição SOXE/genética , Testículo/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/genéticaRESUMO
PURPOSE: We assessed the impact of plasma trough concentrations of abiraterone (ABI) and its metabolite Δ4-abiraterone (D4A) and related polymorphisms on adverse events (AEs) in patients with metastatic prostate cancer who received abiraterone acetate (AA). METHODS: This prospective study enrolled patients with advanced prostate cancer treated with AA between 2016 and 2021. Plasma trough concentrations of ABI and D4A were measured using high-performance liquid chromatography. The impact of HSD3B1 rs1047303, SRD5A2 rs523349, and cytochrome P450 family 3A member 4 rs2242480 polymorphisms on plasma concentrations of ABI and D4A and the incidence of AEs were also assessed. RESULTS: In 68 patients treated with AA, the median ABI and D4A concentrations were 18.1 and 0.94 ng/mL, respectively. The high plasma trough concentration of ABI (≥ 20.6 ng/mL) was significantly associated with the presence of any AE and its independent risk factor based on multivariable analysis (odds ratio, 7.20; 95% confidence interval (CI): 2.20-23.49). Additionally, a high plasma trough concentration of ABI was an independent risk factor of time to withdraw AA (hazard ratio, 4.89; 95% CI: 1.66-14.38). The risk alleles of three polymorphisms were not statistically associated with the ABI and D4A concentrations and the incidence of AEs. CONCLUSIONS: The plasma trough concentration of ABI is associated with the presence of AEs and treatment failure after AA administration. ABI concentration monitoring may be useful in patients with prostate cancer who received AA.
Assuntos
Acetato de Abiraterona , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Acetato de Abiraterona/efeitos adversos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Estudos Prospectivos , Androstenos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Proteínas de Membrana/uso terapêutico , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/uso terapêuticoRESUMO
CONTEXT: 46,XY, disorders of sexual development (46,XY, DSD) is a congenital genetic disease whose pathogenesis is complex and clinical manifestations are diverse. The existing molecular research has often focused on single-centre sequencing data, instead of prediction based on big data. AIMS: This work aimed to fully understand the pathogenesis of 46,XY, DSD, and summarise the key pathogenic genes. METHODS: Firstly, the potential pathogenic genes were identified from public data. Secondly, bioinformatics was used to predict pathogenic genes, including hub gene analysis, protein-protein interaction (PPI) and function enrichment analysis. Lastly, the genomic DNA from two unrelated families were recruited, next-generation sequencing and Sanger sequencing were performed to verify the hub genes. KEY RESULTS: A total of 161 potential pathogenic genes were selected from MGI and PubMed gene sets. The PPI network was built which included 144 nodes and 194 edges. MCODE 4 was selected from PPI which scored the most significant P -value. The top 15 hub genes were ranked and identified by Cytoscape. Furthermore, three variants were found on SRD5A2 gene by genome sequencing, which belonged to the prediction hub genes. CONCLUSIONS: Our results indicate that occurrence of 46,XY, DSD is attributed to a variety of genes. Bioinformatics analysis can help us predict the hub genes and find the most core network MCODE model. IMPLICATIONS: Bioinformatic predictions may provide a novel perspective on better understanding the pathogenesis of 46,XY, DSD.
Assuntos
Transtornos do Desenvolvimento Sexual , Mapas de Interação de Proteínas , Humanos , Mapas de Interação de Proteínas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional/métodos , Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/genética , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-DesidrogenaseRESUMO
PURPOSE: 46,XY disorders of sex development (DSD) is the most complicated and common type of DSD. To date, more than 30 genes have been identified associated with 46,XY DSD. However, the mutation spectrum of 46,XY DSD is incomplete owing to the high genetic and clinical heterogeneity. This study aims to provide clinical and mutational characteristics of 18 Chinese patients with 46,XY DSD. METHODS: A total of 20 unrelated individuals with 46,XY DSD were recruited. Whole-exome sequencing (WES) or custom-panel sequencing combined Sanger sequencing were performed to detect the pathogenic mutations. The pathogenicity of the variant was assessed according to the American College of Medical Genetics and Genomics (ACMG) guidance and technical standards recommended by the ACMG and the Clinical Genome Resource (ClinGen). RESULTS: Six patients harbored NR5A1 mutations; two patients harbored NR0B1 mutations; six patients harbored SRD5A2 mutations; six patients harbored AR mutations. Six novel genetic variants were identified involved in three genes (NR5A1, NR0B1, and AR). CONCLUSION: We determined the genetic etiology for all enrolled patients. Our study expanded the mutation spectrum of 46,XY DSD and provided diagnostic evidence for patients with the same mutation in the future.
Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Transtornos do Desenvolvimento Sexual , Humanos , Transtorno 46,XY do Desenvolvimento Sexual/genética , População do Leste Asiático , Mutação , Desenvolvimento Sexual , Fenótipo , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Fator Esteroidogênico 1/genética , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genéticaRESUMO
BACKGROUND: Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. RESULTS: Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women's buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. CONCLUSIONS: SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Colestenona 5 alfa-Redutase , Kisspeptinas , Proteínas de Membrana/metabolismo , Adaptação Fisiológica , Animais , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Epigênese Genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , CamundongosRESUMO
The phenotype of the 5α-reductase type 2 deficiency (5αRD2) by the SRD5A2 gene mutation varies, and although there have been many attempts, the genotype-phenotype correlation still has not yet been adequately evaluated. Recently, the crystal structure of the 5α-reductase type 2 isozyme (SRD5A2) has been determined. Therefore, the present study retrospectively evaluated the genotype-phenotype correlation from a structural perspective in 19 Korean patients with 5αRD2. Additionally, variants were classified according to structural categories, and phenotypic severity was compared with previously published data. The p.R227Q variant, which belongs to the NADPH-binding residue mutation category, exhibited a more masculine phenotype (higher external masculinization score) than other variants. Furthermore, compound heterozygous mutations with p.R227Q mitigated phenotypic severity. Similarly, other mutations in this category showed mild to moderate phenotypes. Conversely, the variants categorized as structure-destabilizing and small to bulky residue mutations showed moderate to severe phenotypes, and those categorized as catalytic site and helix-breaking mutations exhibited severe phenotypes. Therefore, the SRD5A2 structural approach suggested that a genotype-phenotype correlation does exist in 5αRD2. Furthermore, the categorization of SRD5A2 gene variants according to the SRD5A2 structure facilitates the prediction of the severity of 5αRD2 and the management and genetic counseling of patients affected by it.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Hipospadia , Humanos , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Estudos de Associação Genética , Hipospadia/genética , Proteínas de Membrana/genética , Mutação , Oxirredutases/genética , Estudos RetrospectivosRESUMO
Steroid hormones synchronize a variety of functions throughout all stages of life. Importantly, steroid hormone-transforming enzymes are ultimately responsible for the regulation of these potent signaling molecules. Germline mutations that cause dysfunction in these enzymes cause a variety of endocrine disorders. Mutations in SRD5A2, HSD17B3, and HSD3B2 genes that lead to disordered sexual development, salt wasting, and other severe disorders provide a glimpse of the impacts of mutations in steroid hormone transforming enzymes. In a departure from these established examples, this review examines disease-associated germline coding mutations in steroid-transforming members of the human aldo-keto reductase (AKR) superfamily. We consider two main categories of missense mutations: those resulting from nonsynonymous single nucleotide polymorphisms (nsSNPs) and cases resulting from familial inherited base pair substitutions. We found mutations in human AKR1C genes that disrupt androgen metabolism, which can affect male sexual development and exacerbate prostate cancer and polycystic ovary syndrome (PCOS). Others may be disease causal in the AKR1D1 gene that is responsible for bile acid deficiency. However, given the extensive roles of AKRs in steroid metabolism, we predict that with expanding publicly available data and analysis tools, there is still much to be uncovered regarding germline AKR mutations in disease.
Assuntos
Mutação em Linhagem Germinativa , Oxirredutases , Masculino , Humanos , Aldo-Ceto Redutases/genética , Oxirredutases/metabolismo , Esteroides/metabolismo , Hormônios , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genéticaRESUMO
BACKGROUND: The development of benign prostatic hyperplasia (BPH) and medication-refractory lower urinary tract symptoms (LUTS) remain poorly understood. This study attempted to characterize the pathways associated with failure of medical therapy for BPH/LUTS. METHODS: Transitional zone tissue levels of cholesterol and steroids were measured in patients who failed medical therapy for BPH/LUTS and controls. Prostatic gene expression was measured using qPCR and BPH cells were used in organoid culture to study prostatic branching. RESULTS: BPH patients on 5-α-reductase inhibitor (5ARI) showed low levels of tissue dihydrotestosterone (DHT), increased levels of steroid 5-α-reductase type II (SRD5A2), and diminished levels of androgen receptor (AR) target genes, prostate-specific antigen (PSA), and transmembrane serine protease 2 (TMPRSS2). 5ARI raised prostatic tissue levels of glucocorticoids (GC), whereas alpha-adrenergic receptor antagonists (α-blockers) did not. Nuclear localization of GR in prostatic epithelium and stroma appeared in all patient samples. Treatment of four BPH organoid cell lines with dexamethasone, a synthetic GC, resulted in budding and branching. CONCLUSIONS: After failure of medical therapy for BPH/LUTS, 5ARI therapy continued to inhibit androgenesis but a 5ARI-induced pathway increased tissue levels of GC not seen in patients on α-blockers. GC stimulation of organoids indicated that the GC receptors are a trigger for controlling growth of prostate glands. A 5ARI-induced pathway revealed GC activation can serve as a master regulator of prostatic branching and growth.