Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Mol Ecol ; 33(2): e17202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947376

RESUMO

Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.


Assuntos
Acetobacter , Gluconatos , Microbiota , Animais , Drosophila , Drosophila melanogaster/genética , Acetobacter/genética , Frutas , Larva/microbiologia , Peso Corporal
2.
J Bacteriol ; 205(11): e0010123, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37930061

RESUMO

IMPORTANCE: Acetobacter pasteurianus, an industrial vinegar-producing strain, is suffered by fermentation stress such as fermentation heat and/or high concentrations of acetic acid. By an experimental evolution approach, we have obtained a stress-tolerant strain, exhibiting significantly increased growth and acetic acid fermentation ability at higher temperatures. In this study, we report that only the three gene mutations of ones accumulated during the adaptation process, ansP, dctD, and glnD, were sufficient to reproduce the increased thermotolerance of A. pasteurianus. These mutations resulted in cell envelope modification, including increased phospholipid and lipopolysaccharide synthesis, increased respiratory activity, and cell size reduction. The phenotypic changes may cooperatively work to make the adapted cell thermotolerant by enhancing cell surface integrity, nutrient or oxygen availability, and energy generation.


Assuntos
Acetobacter , Termotolerância , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Fermentação , Aminoácidos/metabolismo
3.
PLoS Biol ; 18(3): e3000681, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32196485

RESUMO

The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host's diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization.


Assuntos
Acetobacter/fisiologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Lactobacillus/fisiologia , Necessidades Nutricionais/fisiologia , Acetobacter/genética , Acetobacter/metabolismo , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Lactobacillus/genética , Lactobacillus/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/microbiologia , Larva/fisiologia , Redes e Vias Metabólicas , Micronutrientes/metabolismo , Especificidade da Espécie
4.
J Bacteriol ; 204(7): e0004122, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35695500

RESUMO

Acetobacter species are a major component of the gut microbiome of the fruit fly Drosophila melanogaster, a widely used model organism. While a range of studies have illuminated impacts of Acetobacter on their hosts, less is known about how association with the host impacts bacteria. A previous study identified that a purine salvage locus was commonly found in Acetobacter associated with Drosophila. In this study, we sought to verify the functions of predicted purine salvage genes in Acetobacter fabarum DsW_054 and to test the hypothesis that these bacteria can utilize host metabolites as a sole source of nitrogen. Targeted gene deletion and complementation experiments confirmed that genes encoding xanthine dehydrogenase (xdhB), urate hydroxylase (urhA), and allantoinase (puuE) were required for growth on their respective substrates as the sole source of nitrogen. Utilization of urate by Acetobacter is significant because this substrate is the major nitrogenous waste product of Drosophila, and its accumulation in the excretory system is detrimental to both flies and humans. The potential significance of our findings for host purine homeostasis and health are discussed, as are the implications for interactions among microbiota members, which differ in their capacity to utilize host metabolites for nitrogen. IMPORTANCEAcetobacter are commonly found in the gut microbiota of fruit flies, including Drosophila melanogaster. We evaluated the function of purine salvage genes in Acetobacter fabarum to test the hypothesis that this bacterium can utilize host metabolites as a source of nitrogen. Our results identify functions for three genes required for growth on urate, a major host waste product. The utilization of this and other Drosophila metabolites by gut bacteria may play a role in their survival in the host environment. Future research into how microbial metabolism impacts host purine homeostasis may lead to therapies because urate accumulation in the excretory system is detrimental to flies and humans.


Assuntos
Acetobacter , Acetobacter/genética , Animais , Bactérias , Drosophila melanogaster/microbiologia , Humanos , Nitrogênio/metabolismo , Ácido Úrico/metabolismo , Resíduos
5.
J Appl Microbiol ; 132(6): 4130-4149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182093

RESUMO

It has been more than a decade since Acetobacter senegalensis was isolated, identified and described as a thermotolerant strain of acetic acid bacteria. It was isolated from mango fruits in Senegal and used for industrial vinegar production in developing countries, mainly in sub-Saharan Africa. The strain was tested during several spirit vinegar fermentation processes at relatively high temperatures in accordance with African acclimation. The upstream fermentation process had significant stress factors, which are highlighted in this review so that the fermentation process can be better controlled. Due to its high industrial potential, this strain was extensively investigated by diverse industrial microbiologists worldwide; they concentrated on its microbiological, physiological and genomic features. A research group based in Belgium proposed an important project for the investigation of the whole-genome sequence of A. senegalensis. It would use a 454-pyrosequencing technique to determine and corroborate features that could give this strain significant diverse bio-industrial applications. For instance, its application in cocoa bean fermentation has made it a more suitable acetic acid bacterium for the making of chocolate than Acetobacter pasteurianus. Therefore, in this paper, we present a review that summarizes the current research on A. senegalensis at its microbial and genomic levels and also its specific bio-industrial applications, which can provide economic opportunities for African agribusiness. This review summarizes the physiological and genomic characteristics of Acetobacter senegalensis, a thermotolerant strain isolated from mango fruits and intended to be used in industrial vinegar fermentation processes. It also explores other bio-industrial applications such as cocoa fermentation. Vinegar fermentation is usually performed with mesophilic strains in temperate regions of the world. Developing countries, such as Senegal, import vinegar or make 'fake' vinegar by diluting acetic acid obtained from petrochemicals. The use of a thermotolerant Acetobacter senegalensis strain as a solid functional starter culture, as well as the design of a new adapted bioreactor, has significantly contributed to food security and the creation of small- to medium-sized enterprises that produce mango vinegar in West Africa.


Assuntos
Acetobacter , Cacau , Mangifera , Aclimatação , Ácido Acético , Acetobacter/genética , Cacau/microbiologia , Fermentação , Frutas/microbiologia
6.
Antonie Van Leeuwenhoek ; 115(1): 111-123, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34817761

RESUMO

Acetobacter senegalensis belongs to the group of acetic acid bacteria (AAB) that present potential biotechnological applications, for production of D-gluconate, cellulose and acetic acid. AAB can overcome heat and acid stresses by using strategies involving the overexpression of heat-shock proteins and enzymes from the complex pyrroquinoline-ADH, besides alcohol dehydrogenases (ADH). Nonetheless, the isolation of A. senegalensis and other AAB from food may be challenging due to presence of viable but non-culturable (VBNC) cells and due to uncertainties about nutritional requirements. To contribute for a better understanding of the ecology of AAB, this paper reports on the pangenome analysis of five strains of A. senegalensis recently isolated from a Brazilian spontaneous cocoa fermentation. The results showed biosynthetic clusters exclusively found in some cocoa-related AAB, such as those related to terpene pathways, which are important for flavour development. Genes related to oxidative stress were conserved in all the genomes, with multiple clusters. Moreover, there were genes coding for ADH and putative ABC transporters distributed in core, shell and cloud genomes, while chaperonin-encoding genes were present only in the core and soft-core genomes. Regarding quorum sensing, a response regulator gene was in the shell genome, and the gene encoding for acyl-homoserine lactone efflux protein was in the soft-core genome. There were quorum quenching-related genes, mainly encoding for lactonases, but also for acylases. Moreover, A. senegalensis did not have determinants of virulence or antibiotic resistance, which are good traits for strains intended to be applied in food fermentation.


Assuntos
Acetobacter , Cacau , Ácido Acético , Acetobacter/genética , Biotecnologia
7.
Prep Biochem Biotechnol ; 52(1): 38-47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33904376

RESUMO

Vinegar is a common food additive produced by acetic acid bacteria (AAB) during fermentation process. Low yield and long incubation time in conventional vinegar fermentation processes has inspired research in developing efficient fermentation techniques by the activation of AAB for acetic acid production. The present study intends to enhance vinegar production using acetic acid bacteria and light emitting diode (LED). A total of eight acetic acid bacteria were isolated from Korean traditional vinegar and assessed for vinegar production. Isolate AP01 exhibited maximum vinegar production and was identified as Acetobacter pasteurianus based on the 16S rRNA sequences. The optimum fermentation conditions for the isolate AP01 was incubation under static condition at 30 °C for 10 days with 6% initial ethanol concentration. Fermentation under red LED light exhibited maximum vinegar production (3.6%) compared to green (3.5%), blue (3.2%), white (2.2%), and non-LED lights (3.0%). Vinegar produced using red LED showed less toxicity to mouse macrophage cell line (RAW 264.7) and high inhibitory effects on nitric oxide and IL-6 production. The results confirmed that red LED light could be used to increase the yield and decrease incubation time in vinegar fermentation process.


Assuntos
Ácido Acético/metabolismo , Acetobacter/metabolismo , Acetobacter/genética , Acetobacter/efeitos da radiação , Fermentação , Microbiologia Industrial , Luz , RNA Ribossômico 16S/genética
8.
Appl Microbiol Biotechnol ; 105(2): 725-739, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33386897

RESUMO

Elucidation of the acetic acid resistance (AAR) mechanisms is of great significance to the development of industrial microbial species, specifically to the acetic acid bacteria (AAB) in vinegar industry. Currently, the role of population heterogeneity in the AAR of AAB is still unclear. In this study, we investigated the persister formation in AAB and the physiological role of HicAB in Acetobacter pasteurianus Ab3. We found that AAB were able to produce a high level of persister cells (10-2 to 100 in frequency) in the exponential-phase cultures. Initial addition of acetic acid and ethanol reduced the ratio of persister cells in A. pasteurianus by promoting the intracellular ATP level. Further, we demonstrated that HicAB was an important regulator of AAR in A. pasteurianus Ab3. Strains lacking hicAB showed a decreased survival under acetic acid exposure. Deletion of hicAB significantly diminished the acetic acid production, acetification rate, and persister formation in A. pasteurianus Ab3, underscoring the correlation between hicAB, persister formation, and acid stress resistance. By transcriptomic analysis (RNA-seq), we revealed that HicAB contributed to the survival of A. pasteurianus Ab3 under high acid stress by upregulating the expression of genes involved in the acetic acid over-oxidation and transport, 2-methylcitrate cycle, and oxidative phosphorylation. Collectively, the results of this study refresh our current understanding of the AAR mechanisms in A. pasteurianus, which may facilitate the development of novel ways for improving its industrial performance and direct the scaled-up vinegar production. KEY POINTS: • AAB strains form persister cells with different frequencies. • A. pasteurianus are able to form acid-tolerant persister cells. • HicAB contributes to the AAR and persister formation in A. pasteurianus Ab3.


Assuntos
Acetobacter , Antitoxinas , Ácido Acético , Acetobacter/genética , Fermentação
9.
Biotechnol Appl Biochem ; 68(3): 476-485, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32410247

RESUMO

Industrially, the sensitivity of acetic acid bacteria (AAB) to the high temperatures and the high ethanol concentrations is the major concerns for manufacturers. This study was conceived and designed to isolate and identify new thermo- and ethanol-tolerant AAB from Opuntia ficus-indica L. fruits. As a result, among 140 isolated bacterial strains, five selected strains (CR1, CR5, CR23, CZ2, and CZ15) exhibited important acetic acid production until 40 °C. The use of 16S rDNA gene analysis was insufficient to identify selected bacteria. Indeed, except CR5 that presented 100% similarity to A. cerevisiae, the other strains presented similar homology rates simultaneously to the 16S rDNA sequences of A. cerevisiae and A. malorum. The reidentification by 16S-23S rDNA gene sequencing showed that CR1, CR23, and CZ15 were A. malorum, which were shown tolerance to the highest concentration of ethanol (12%) and produced elevated amount (40 g/L) of acetic acid at 37 °C. In summary, we showed the thermotolerance and ethanol tolerant character of new A. malorum strains, which can be used as a starter for vinegar production. Furthermore, during the molecular characterization of the isolated strains, we concluded that 16S-23S rDNA internal transcribed spacer sequence is of great importance for discriminating between AAB species as a complement to the identification by 16S rDNA sequencing.


Assuntos
Acetobacter/isolamento & purificação , Etanol/química , Frutas/microbiologia , Opuntia/microbiologia , Temperatura , Acetobacter/genética , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética
10.
Biosci Biotechnol Biochem ; 85(5): 1243-1251, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686416

RESUMO

Thermotolerant microorganisms are useful for high-temperature fermentation. Several thermally adapted strains were previously obtained from Acetobacter pasteurianus in a nutrient-rich culture medium, while these adapted strains could not grow well at high temperature in the nutrient-poor practical culture medium, "rice moromi." In this study, A. pasteurianus K-1034 originally capable of performing acetic acid fermentation in rice moromi was thermally adapted by experimental evolution using a "pseudo" rice moromi culture. The adapted strains thus obtained were confirmed to grow well in such the nutrient-poor media in flask or jar-fermentor culture up to 40 or 39 °C; the mutation sites of the strains were also determined. The high-temperature fermentation ability was also shown to be comparable with a low-nutrient adapted strain previously obtained. Using the practical fermentation system, "Acetofermenter," acetic acid production was compared in the moromi culture; the results showed that the adapted strains efficiently perform practical vinegar production under high-temperature conditions.


Assuntos
Ácido Acético/metabolismo , Acetobacter/genética , Adaptação Fisiológica/genética , Etanol/metabolismo , Fermentação/genética , Termotolerância/genética , Acetobacter/metabolismo , Reatores Biológicos , Genoma Bacteriano , Temperatura Alta , Mutação , Oryza/química , Oxigênio/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(27): 7099-7104, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915049

RESUMO

While the structure and regulatory networks that govern type-six secretion system (T6SS) activity of Vibrio cholerae are becoming increasingly clear, we know less about the role of T6SS in disease. Under laboratory conditions, V. cholerae uses T6SS to outcompete many Gram-negative species, including other V. cholerae strains and human commensal bacteria. However, the role of these interactions has not been resolved in an in vivo setting. We used the Drosophila melanogaster model of cholera to define the contribution of T6SS to V. cholerae pathogenesis. Here, we demonstrate that interactions between T6SS and host commensals impact pathogenesis. Inactivation of T6SS, or removal of commensal bacteria, attenuates disease severity. Reintroduction of the commensal, Acetobacter pasteurianus, into a germ-free host is sufficient to restore T6SS-dependent pathogenesis in which T6SS and host immune responses regulate viability. Together, our data demonstrate that T6SS acts on commensal bacteria to promote the pathogenesis of V. cholerae.


Assuntos
Acetobacter/metabolismo , Proteínas de Bactérias/metabolismo , Cólera/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Acetobacter/genética , Animais , Proteínas de Bactérias/genética , Cólera/genética , Cólera/microbiologia , Modelos Animais de Doenças , Drosophila melanogaster , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética
12.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32015144

RESUMO

Acetobacter pasteurianus is an industrial strain used for the vinegar production. Many A. pasteurianus strains with different phenotypic characteristics have been isolated so far. To understand the genetic background underpinning these phenotypes, a comparative genomic analysis of A. pasteurianus strains was conducted. Based on bioinformatics and experimental results, we report the following. (i) The gene repertoire related to the respiratory chains showed that several horizontal gene transfer events occurred after the divergence of these strains, indicating that the respiratory chain in A. pasteurianus has the diversity to adapt to its environment. (ii) There is a clear difference in thermotolerance even between 12 closely related strains. NBRC 3279, NBRC 3284, and NBRC 3283, in particular, which have only 55 mutations in total, showed differences in thermotolerance. The Na+/H+ antiporter gene nhaK2 was mutated in the thermosensitive NBRC 3279 and NBRC 3284 strains and not in the thermotolerant NBRC 3283 strain. The Na+/H+ antiporter activity of the three strains and expression of nhaK2 gene from NBRC 3283 in the two thermosensitive strains showed that these mutations are critical for thermotolerance. These results suggested that horizontal gene transfer events and several mutations have affected the phenotypes of these closely related strains.IMPORTANCEAcetobacter pasteurianus, an industrial vinegar-producing strain, exhibits diverse phenotypic differences such as respiratory activity related to acetic acid production, acetic acid resistance, or thermotolerance. In this study, we investigated the correlations between genome sequences and phenotypes among closely related A. pasteurianus strains. The gene repertoire related to the respiratory chains showed that the respiratory components of A. pasteurianus has a diversity caused by several horizontal gene transfers and mutations. In three closely related strains with clear differences in their thermotolerances, we found that the insertion or deletion that occurred in the Na+/H+ antiporter gene nhaK2 is directly related to their thermotolerance. Our study suggests that a relatively quick mutation has occurred in the closely related A. pasteurianus due to its genetic instability and that this has largely affected its phenotype.


Assuntos
Acetobacter/genética , Genoma Bacteriano , Acetobacter/classificação , Acetobacter/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Temperatura Alta , Fenótipo
13.
PLoS Biol ; 15(4): e2000862, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28441450

RESUMO

Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.


Assuntos
Acetobacter/fisiologia , Aminoácidos Essenciais/metabolismo , Drosophila melanogaster/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Lactobacillus/fisiologia , Simbiose , Acetobacter/genética , Acetobacter/crescimento & desenvolvimento , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/fisiologia , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/deficiência , Animais , Animais Geneticamente Modificados , Regulação do Apetite , Comportamento Animal , Misturas Complexas/administração & dosagem , Misturas Complexas/química , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Feminino , Preferências Alimentares , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Oviposição , Especificidade da Espécie , Fermento Seco/química
14.
Appl Microbiol Biotechnol ; 104(24): 10585-10599, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33156446

RESUMO

Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianus. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to high acid stress during vinegar production. By comparing the transcriptional landscape of cells harvested from a long-term cultivation with high acidity (70 ± 3 g/L) to that of low acidity (10 ± 2 g/L), we demonstrated that 1005 genes were differentially expressed. By functional enrichment analysis, we found that the expression of genes related to the two-component systems (TCS) and toxin-antitoxin systems (TAS) was significantly regulated under high acid stress. Cells increased the genome stability to withstand the intracellular toxicity caused by the acetic acid accumulation by repressing the expression of transposases and integrases. Moreover, high acid stress induced the expression of genes involved in the pathways of peptidoglycan, ceramide, and phosphatidylcholine biosynthesis as well as the Tol-Pal and TonB-ExbB systems. In addition, we observed that cells increased and diversified the ATP production to resist high acid stress. Transcriptional upregulation in the pathways of pyrroloquinoline quinone (PQQ) synthesis and thiamine metabolism suggested that cells may increase the production of prosthetic groups to ensure the enzyme activity upon high acid stress. Collectively, the results of this study increase our current understanding of the acetic acid resistance (AAR) mechanisms in A. pasteurianus and provide opportunities for strain improvement and scaled-up vinegar production.Key Points• TCS and TAS are responsive to the acid stress and constitute the regulating networks.• Adaptive expression changes of cell envelope elements help cell resist acid stress.• Cells promote genome stability and diversify ATP production to withstand acid stress.


Assuntos
Ácido Acético , Acetobacter , Ácido Acético/toxicidade , Acetobacter/genética , Fermentação , Transcriptoma
15.
Biosci Biotechnol Biochem ; 84(4): 832-841, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31851582

RESUMO

Thermotolerant strains are critical for low-cost high temperature fermentation. In this study, we carried out the thermal adaptation of A. pasteurianus IFO 3283-32 under acetic acid fermentation conditions using an experimental evolution approach from 37ºC to 40ºC. The adapted strain exhibited an increased growth and acetic acid fermentation ability at high temperatures, however, with the trade-off response of the opposite phenotype at low temperatures. Genome analysis followed by PCR sequencing showed that the most adapted strain had 11 mutations, a single 64-kb large deletion, and a single plasmid loss. Comparative phenotypic analysis showed that at least the large deletion (containing many ribosomal RNAs and tRNAs genes) and a mutation of DNA polymerase (one of the 11 mutations) critically contributed to this thermotolerance. The relationship between the phenotypic changes and the gene mutations are discussed, comparing with another thermally adapted A. pasteurianus strains obtained previously.


Assuntos
Acetobacter/fisiologia , Evolução Molecular , Genoma Bacteriano , Termotolerância , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Fermentação , Mutação
16.
Food Microbiol ; 92: 103597, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950138

RESUMO

Acetobacter pasteurianus 386B has been selected as a candidate functional starter culture to better control the cocoa fermentation process. Previously, its genome has been sequenced and a genome-scale metabolic model (GEM) has been reconstructed. To understand its metabolic adaptation to cocoa fermentation conditions, different flux balance analysis (FBA) simulations were performed and compared with experimental data. In particular, metabolic flux distributions were simulated for two phases that characterize the growth of A. pasteurianus 386B under cocoa fermentation conditions, predicting a switch in respiratory chain usage in between these phases. The possible influence on the resulting energy production was shown using a reduced version of the GEM. FBA simulations revealed the importance of the compartmentalization of the ethanol oxidation reactions, namely in the periplasm or in the cytoplasm, and highlighted the potential role of ethanol as a source of carbon, energy, and NADPH. Regarding the latter, the physiological function of a proton-translocating NAD(P)+ transhydrogenase was further investigated in silico. This study revealed the potential of using a GEM to simulate the metabolism of A. pasteurianus 386B, and may provide a general framework toward a better physiological understanding of functional starter cultures in food fermentation processes.


Assuntos
Acetobacter/fisiologia , Cacau/microbiologia , Genoma Bacteriano , Acetobacter/genética , Adaptação Fisiológica , Proteínas de Bactérias/genética , Etanol/metabolismo , Fermentação , Microbiologia de Alimentos , NADP/metabolismo , Sementes/microbiologia
17.
Food Microbiol ; 92: 103559, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950153

RESUMO

Symphony orchestra of multi-microorganisms characterizes the solid-state acetic acid fermentation process of Chinese cereal vinegars. Lactate is the predominant non-volatile acid and plays indispensable roles in flavor formation. This study investigated the microbial consortia driving the metabolism of D-/l-lactate during fermentation. Sequencing analysis based on D-/l-lactate dehydrogenase genes demonstrated that Lactobacillus (relative abundance: > 95%) dominated the production of both d-lactate and l-lactate, showing species-specific features between the two types. Lactobacillus helveticus (>65%) and L. reuteri (~80%) respectively dominated l- and d-lactate-producing communities. D-/l-lactate production and utilization capabilities of eight predominant Lactobacillus strains were determined by culture-dependent approach. Subsequently, D-/l-lactate producer L. plantarum M10-1 (d:l ≈ 1:1), l-lactate producer L. casei 21M3-1 (D:L ≈ 0.2:9.8) and D-/l-lactate utilizer Acetobacter pasteurianus G3-2 were selected to modulate the metabolic flux of D-/l-lactate of microbial consortia. The production ratio of D-/l-lactate was correspondingly shifted coupling with microbial consortia changes. Bioaugmentation with L.casei 21M3-1 merely enhanced l-lactate production, displaying ~4-fold elevation at the end of fermentation. Addition of L.plantarum M10-1 twice increased both D- and l-lactate production, while A. pasteurianus G3-2 decreased the content of D-/l-isomer. Our results provided an alternative strategy to specifically manipulate the metabolic flux within microbial consortia of certain ecological niches.


Assuntos
Ácido Acético/metabolismo , Bactérias/metabolismo , Grão Comestível/microbiologia , Ácido Láctico/metabolismo , Microbiota , Ácido Acético/análise , Acetobacter/genética , Acetobacter/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Grão Comestível/química , Grão Comestível/metabolismo , Etanol/metabolismo , Fermentação , Microbiologia de Alimentos , Lactobacillus/genética , Lactobacillus/metabolismo
18.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389767

RESUMO

Interactions between species shape the formation and function of microbial communities. In the gut microbiota of animals, cross-feeding of metabolites between microbes can enhance colonization and influence host physiology. We examined a mutually beneficial interaction between two bacteria isolated from the gut microbiota of Drosophila, i.e., Acetobacter fabarum and Lactobacillus brevis After developing an in vitro coculture assay, we utilized a genetic screen to identify A. fabarum genes required for enhanced growth with L. brevis The screen, and subsequent genetic analyses, showed that the gene encoding pyruvate phosphate dikinase (ppdK) is required for A. fabarum to benefit fully from coculture. By testing strains with mutations in a range of metabolic genes, we provide evidence that A. fabarum can utilize multiple fermentation products of L. brevis Mutualism between the bacteria in vivo affects gnotobiotic Drosophila melanogaster; flies associated with A. fabarum and L. brevis showed >1,000-fold increases in bacterial cell density and significantly lower triglyceride storage than monocolonized flies. Mutation of ppdK decreased A. fabarum density in flies cocolonized with L. brevis, consistent with the model in which Acetobacter employs gluconeogenesis to assimilate Lactobacillus fermentation products as a source of carbon in vivo We propose that cross-feeding between these groups is a common feature of microbiota in DrosophilaIMPORTANCE The digestive tracts of animals are home to a community of microorganisms, the gut microbiota, which affects the growth, development, and health of the host. Interactions among microbes in this inner ecosystem can influence which species colonize the gut and can lead to changes in host physiology. We investigated a mutually beneficial interaction between two bacterial species from the gut microbiota of fruit flies. By coculturing the bacteria in vitro, we were able to identify a metabolic gene required for the bacteria to grow better together than they do separately. Our data suggest that one species consumes the waste products of the other, leading to greater productivity of the microbial community and modifying the nutrients available to the host. This study provides a starting point for investigating how these and other bacteria mutually benefit by sharing metabolites and for determining the impact of mutualism on host health.


Assuntos
Acetobacter/genética , Proteínas de Bactérias/genética , Drosophila melanogaster/microbiologia , Microbioma Gastrointestinal/fisiologia , Levilactobacillus brevis/genética , Simbiose , Acetobacter/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Feminino , Trato Gastrointestinal/microbiologia , Levilactobacillus brevis/metabolismo
19.
Emerg Infect Dis ; 24(3): 598-599, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460757

RESUMO

We report a case of Acetobacter indonesiensis pneumonia in a 51-year-old woman after bilateral lung transplantation. We found 2 other A. indonesiensis pneumonia cases reported in the literature. All 3 cases involved complex patients exposed to broad-spectrum antimicrobial drugs, suggesting that this pathogen may be opportunistic and highly drug-resistant.


Assuntos
Acetobacter , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Transplante de Pulmão/efeitos adversos , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/microbiologia , Acetobacter/classificação , Acetobacter/efeitos dos fármacos , Acetobacter/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Feminino , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Pneumonia Bacteriana/tratamento farmacológico , RNA Ribossômico 16S/genética , Resultado do Tratamento
20.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934334

RESUMO

Animal-associated microorganisms (microbiota) dramatically influence the nutritional and physiological traits of their hosts. To expand our understanding of such influences, we predicted bacterial genes that influence a quantitative animal trait by a comparative genomic approach, and we extended these predictions via mutant analysis. We focused on Drosophila melanogaster starvation resistance (SR). We first confirmed that D. melanogaster SR responds to the microbiota by demonstrating that bacterium-free flies have greater SR than flies bearing a standard 5-species microbial community, and we extended this analysis by revealing the species-specific influences of 38 genome-sequenced bacterial species on D. melanogaster SR. A subsequent metagenome-wide association analysis predicted bacterial genes with potential influence on D. melanogaster SR, among which were significant enrichments in bacterial genes for the metabolism of sulfur-containing amino acids and B vitamins. Dietary supplementation experiments established that the addition of methionine, but not B vitamins, to the diets significantly lowered D. melanogaster SR in a way that was additive, but not interactive, with the microbiota. A direct role for bacterial methionine metabolism genes in D. melanogaster SR was subsequently confirmed by analysis of flies that were reared individually with distinct methionine cycle Escherichia coli mutants. The correlated responses of D. melanogaster SR to bacterial methionine metabolism mutants and dietary modification are consistent with the established finding that bacteria can influence fly phenotypes through dietary modification, although we do not provide explicit evidence of this conclusion. Taken together, this work reveals that D. melanogaster SR is a microbiota-responsive trait, and specific bacterial genes underlie these influences.IMPORTANCE Extending descriptive studies of animal-associated microorganisms (microbiota) to define causal mechanistic bases for their influence on animal traits is an emerging imperative. In this study, we reveal that D. melanogaster starvation resistance (SR), a model quantitative trait in animal genetics, responds to the presence and identity of the microbiota. Using a predictive analysis, we reveal that the amino acid methionine has a key influence on D. melanogaster SR and show that bacterial methionine metabolism mutants alter normal patterns of SR in flies bearing the bacteria. Our data further suggest that these effects are additive, and we propose the untested hypothesis that, similar to bacterial effects on fruit fly triacylglyceride deposition, the bacterial influence may be through dietary modification. Together, these findings expand our understanding of the bacterial genetic basis for influence on a nutritionally relevant trait of a model animal host.


Assuntos
Drosophila melanogaster/microbiologia , Trato Gastrointestinal/microbiologia , Metionina/metabolismo , Microbiota/genética , Inanição/prevenção & controle , Acetobacter/genética , Acetobacter/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Lactobacillus/genética , Lactobacillus/metabolismo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA