Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.236
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 56, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135176

RESUMO

This study evaluated the effects of supplementing the diet of lactating cows with Acremonium terrestris culture (ATC) on milk production, serum antioxidant capacity, inflammatory indices, and serum lipid metabolomics. Over 90 days, 24 multiparous Chinese Holstein cows in mid-lactation (108 ± 10.4 days in milk, 637 ± 25 kg body weight, 30.23 ± 3.7 kg/d milk yield) were divided into either a control diet (CON) or a diet supplemented with 30 g of ATC daily. All the data were analyzed using Student's t test with SPSS 20.0 software. The results showed that compared with CON feeding, ATC feeding significantly increased milk yield, antioxidant capacity, and immune function. Lipidome screening identified 143 lipid metabolites that differed between the two groups. Further analysis using "random forest" machine learning revealed three glycerophospholipid serum metabolites that could serve as lipid markers with a predictive accuracy of 91.67%. This study suggests that ATC can be a useful dietary supplement for improving lactational performance in dairy cows and provides valuable insights into developing nutritional strategies to maintain metabolic homeostasis in ruminants.


Assuntos
Acremonium , Suplementos Nutricionais , Lactação , Lipidômica , Espectrometria de Massas em Tandem , Animais , Bovinos , Feminino , Lipidômica/métodos , Acremonium/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Lipídeos/sangue , Leite/química , Leite/metabolismo , Ração Animal/análise , Antioxidantes/metabolismo
2.
Microb Cell Fact ; 23(1): 133, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720294

RESUMO

BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-ß-glucosidase (αRßG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRßG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS: αRßG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Hypocreales/metabolismo , Rutina/farmacologia , Rutina/química , Acremonium , Gencitabina , Dissacarídeos/farmacologia , Dissacarídeos/química
3.
Physiol Plant ; 176(3): e14328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695265

RESUMO

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Assuntos
Acremonium , Homeostase , Oxirredução , Reguladores de Crescimento de Plantas , Tolerância ao Sal , Transdução de Sinais , Acremonium/metabolismo , Acremonium/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/fisiologia , Brassica napus/microbiologia , Brassica napus/metabolismo , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Estresse Salino/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fotossíntese
4.
Physiol Plant ; 176(2): e14259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511474

RESUMO

Proteins of the armadillo repeat gene family play important roles in plant pathogen response. Here, 169 armadillo (ARM) genes were identified in upland cotton (Gossypium hirsutum). Phylogenetic analysis grouped these into 11 subfamilies, with conserved protein structures within each subfamily. The results signify that the expansion of the gene family occurred via whole genome duplication and dispersed duplication. Expression profiling and network analysis suggest that GhARM144 may regulate cotton resistance to Verticillium dahliae. GhARM144 was upregulated in roots by V. dahliae infection or salicylic acid treatment. This upregulation indicates a negative regulatory role of GhARM144' in the cotton immune responses, potentially by manipulating salicylic acid biosynthesis. Protein interaction studies found that GhARM144 associates with an osmotin-like protein, GhOSM34, at the plasma membrane. Silencing GhOSM34 reduced the resistance to V. dahliae, suggesting it may play a positive regulatory role. The results demonstrate that GhARM144 modulates cotton immunity through interaction with GhOSM34 and salicylic acid signalling. Further study of these proteins may yield insights into disease resistance mechanisms in cotton and other plants.


Assuntos
Acremonium , Ascomicetos , Verticillium , Filogenia , Verticillium/metabolismo , Gossypium/genética , Gossypium/metabolismo , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Nat Prod ; 87(4): 1059-1066, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38561238

RESUMO

Seven new sugar alcohol-conjugated acyclic sesquiterpenes, acremosides A-G (1-7), were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. The structures were determined by comprehensive analyses of 1D and 2D NMR spectroscopic data. The relative configurations were established by J-based configuration analysis and acetonide derivatization. The absolute configurations were elucidated by the Mosher ester method and ECD calculations. The structures of acremosides E-G (5-7) featured the linear sesquiterpene skeleton with a tetrahydrofuran moiety attached to a sugar alcohol. Acremosides A (1) and C-E (3-5) showed significant inhibitory activities against hepatitis C virus (EC50 values of 4.8-8.8 µM) with no cytotoxicity (CC50 of >200 µM).


Assuntos
Acremonium , Sesquiterpenos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Animais , Estrutura Molecular , Acremonium/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Poríferos/química , Hepacivirus/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos
6.
Appl Microbiol Biotechnol ; 108(1): 250, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430417

RESUMO

The fungal diglycosidase α-rhamnosyl-ß-glucosidase I (αRßG I) from Acremonium sp. DSM 24697 catalyzes the glycosylation of various OH-acceptors using the citrus flavanone hesperidin. We successfully applied a one-pot biocatalysis process to synthesize 4-methylumbellipheryl rutinoside (4-MUR) and glyceryl rutinoside using a citrus peel residue as sugar donor. This residue, which contained 3.5 % [w/w] hesperidin, is the remaining of citrus processing after producing orange juice, essential oil, and peel-juice. The low-cost compound glycerol was utilized in the synthesis of glyceryl rutinoside. We implemented a simple method for the obtention of glyceryl rutinoside with 99 % yield, and its purification involving activated charcoal, which also facilitated the recovery of the by-product hesperetin through liquid-liquid extraction. This process presents a promising alternative for biorefinery operations, highlighting the valuable role of αRßG I in valorizing glycerol and agricultural by-products. KEYPOINTS: • αRßG I catalyzed the synthesis of rutinosides using a suspension of OPW as sugar donor. • The glycosylation of aliphatic polyalcohols by the αRßG I resulted in products bearing a single rutinose moiety. • αRßG I catalyzed the synthesis of glyceryl rutinoside with high glycosylation/hydrolysis selectivity (99 % yield).


Assuntos
Acremonium , Hesperidina , Hesperidina/química , Glicerol
7.
Phytopathology ; 114(1): 61-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530500

RESUMO

Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.


Assuntos
Acremonium , Ascomicetos , Verticillium , Bacillus subtilis/genética , Filogenia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Gossypium/genética , Extratos Vegetais , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas
8.
J Asian Nat Prod Res ; 26(4): 489-496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37642432

RESUMO

Two new compounds named 3(S)-hydroxy-1-(2,4,5-trihydroxy-3,6- dimethylphenyl)-hex-4E-en-1-one (1) and acremonilactone (2), together with nine known compounds (3-11), were isolated from the fermentation broth of Acremonium sp. associated with marine sediments collected from South China Sea. NMR and HRESIMS spectroscopic analysis elucidated the structure of two new compounds. Compound 2 had characteristic rotary gate shape skeleton with a six-membered lactone. Compounds 1 and 9 showed DPPH radical scavenging activity with inhibition rates of 96.50 and 85.95% at the concentration of 0.5 mg/ml, respectively. Moreover, compounds 4, 6 and 11 showed definite antibacterial activity against Staphylococcus aureus ATCC 6538.


Assuntos
Acremonium , Acremonium/química , Estrutura Molecular , Fungos , Staphylococcus aureus , Espectroscopia de Ressonância Magnética , Antibacterianos/química
9.
World J Microbiol Biotechnol ; 40(9): 274, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030384

RESUMO

Argemone mexicana belonging to family Papaveraceae is a traditional medicinal plant widely utilized by tribal people in India for treating various ailments like skin infections, wounds and inflammation. This plant is very rich in alkaloidal content, which has a great potential in the treatment of anti-inflammatory disorders. Therapeutically promising bioactive molecules are often produced by endophytic fungi associated with medicinal plants. In this investigation, endophytic fungi were isolated from various parts of A. mexicana and screened for alkaloidal content. Among these, one of the fungal isolate, Acremonium alternatum AMEF-5 producing maximum alkaloids showed significant anti-inflammatory activity. Fractionation of this crude fungal extract through column chromatography yielded eight fractions, which were further screened for anti-inflammatory activities. Fraction 3 exhibited significant anti-inflammatory activity by the inhibition of lipoxygenase enzyme (IC50 15.2 ± 0.09 µg/ml), scavenging of the nitric oxide radicals (IC50 11.38 ± 0.35 µg/ml), protein denaturation (IC50 14.93 ± 0.4 µg/ml), trypsin inhibition (IC50 12.06 ± 0.64 µg/ml) and HRBC stabilization (IC50 11.9 ± 0.22 µg/ml). The bioactive alkaloid in fraction 3 was identified as aconitine which was confirmed by UV, FTIR, HPLC, HRMS, 1H NMR, and 13C NMR analysis. This study demonstrates that endophytic fungi serve a potential source for sustainable production of therapeutically important alkaloids.


Assuntos
Aconitina , Acremonium , Anti-Inflamatórios , Endófitos , Acremonium/metabolismo , Acremonium/química , Anti-Inflamatórios/farmacologia , Aconitina/farmacologia , Aconitina/química , Endófitos/metabolismo , Endófitos/química , Endófitos/isolamento & purificação , Animais , Óxido Nítrico/metabolismo , Camundongos , Alcaloides/farmacologia , Lipoxigenase/metabolismo , Células RAW 264.7 , Índia
10.
Biochem Biophys Res Commun ; 677: 119-125, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573766

RESUMO

Sesquiterpene synthases convert farnesyl diphosphate into various sesquiterpenes, which find wide applications in the food, cosmetics and pharmaceutical industries. Although numerous putative sesquiterpene synthases have been identified in fungal genomes, many lack biochemical characterization. In this study, we identified a putative terpene synthase AcTPS3 from Acremonium chrysogenum. Through sequence analysis and in vitro enzyme assay, AcTPS3 was identified as a sesquiterpene synthase. To obtain sufficient product for NMR testing, a metabolic engineered Saccharomyces cerevisiae was constructed to overproduce the product of AcTPS3. The major product of AcTPS3 was identified as (+)-cubenene (55.46%) by GC-MS and NMR. Thus, AcTPS3 was confirmed as (+)-cubenene synthase, which is the first report of (+)-cubenene synthase. The optimized S. cerevisiae strain achieved a biosynthesis titer of 597.3 mg/L, the highest reported for (+)-cubenene synthesis.


Assuntos
Acremonium , Alquil e Aril Transferases , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Acremonium/genética , Acremonium/metabolismo , Genoma Fúngico , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo
11.
Phytopathology ; 113(3): 436-447, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346375

RESUMO

Cephalosporium gramineum survives primarily in colonized plant residue but is also transmitted by seed at a low frequency. The purpose of this study was to correlate disease intensity in the field with percentage of infected seed and amount of pathogen DNA using a high-throughput PCR method. Field-grown seed of three wheat cultivars was collected over 4 years from plots with a known disease index. The culture-based seed infection rate was determined by isolation of C. gramineum from 2,016 seeds per seed lot. DNA of 380 seeds from each seed lot was extracted individually, and a PCR assay with a fluorescent-labeled forward primer for detecting C. gramineum was performed on each seed. C. gramineum was isolated from 0.12% of the seed on average (range 0 to 0.74%), whereas it was detected in 3.7% on average (range 1.3 to 7.6%) using PCR detection. The single-seed PCR assay was more sensitive than either the culture-based method or conventional PCR. DNA of 674 seeds that tested positive by this PCR was quantified using a real-time PCR with newly designed primers for the amount of pathogen per seed. Seed contained 0.017 to 77.1 pg/seed of C. gramineum DNA (mean 3.0 pg/seed). Disease index was positively correlated with seed infection rate but not with pathogen titer in seed. This fluorescent-labeled PCR, along with quantitative PCR, improved our understanding of seed transmission of C. gramineum in wheat.


Assuntos
Acremonium , Acremonium/genética , Triticum/genética , Doenças das Plantas/genética , Sementes , Reação em Cadeia da Polimerase em Tempo Real/métodos
12.
Phytopathology ; 113(7): 1254-1265, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36611234

RESUMO

The soilborne fungus Hymenula cerealis causes Cephalosporium stripe, a vascular wilt disease of wheat and other grasses in the United States and other wheat-producing countries where winter wheat is subjected to snow cover and frozen soil. No sexual stage is known for H. cerealis, and consequently, its phylogenetic position relative to other fungi has been difficult to establish. The purpose of this study was to conduct a multilocus sequence analysis to determine the phylogenetic position of H. cerealis. Sequence data for five genes, the internal transcribed spacer (ITS), partial large subunit nrDNA (LSU), partial RNA polymerase II second largest subunit region (RPB2), ß-tubulin gene, and translation elongation factor 1-α (TEF1-α), from a diverse set of C. gramineum isolates and other related fungi was obtained from GenBank or directly from isolates in the Murray lab and used to construct maximum-likelihood and Bayesian trees. Based on phylogenetic analysis of the single LSU and ß-tubulin genes, Cephalosporium gramineum is closely related to the Drepanopezizaceae and Ploettnerulaceae of Helotiales. Based on analyses of the DNA sequence of the ITS, RPB2, and TEF1-α genes, as well as the combined five-gene data set, C. gramineum belongs to the family Drepanopezizaceae, which is a sister taxon to the Ploettnerulaceae, and formed a well-supported clade (MLBP/BIPP = 95%/100%). In conclusion, H. cerealis belongs to the Helotiales, Leotiomycetes.


Assuntos
Acremonium , Ascomicetos , Filogenia , Tubulina (Proteína)/genética , Teorema de Bayes , Doenças das Plantas/microbiologia , Ascomicetos/genética
13.
Mar Drugs ; 22(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248650

RESUMO

Four new compounds, including two ascochlorin-type meroterpenoids acremocholrins A (1) and B (2), one pyridone alkaloid acremopyridone A (7), and one cyclopentenone derivative acremoketene A (12), together with eight known compounds (3-6 and 8-11), were isolated and identified from the hadal trench-derived fungus Acremonium dichromosporum YP-213. Their structures were determined with a detailed spectroscopic analysis of NMR and MS data, NOE analysis, octant rule and quantum chemical calculations of ECD, and NMR (with DP4+ probability analysis). Among the compounds, 7 represent a novel scaffold derived from a pyridone alkaloid by cleavage of the C-16-C-17 bond following oxidation to give a ketone. Compounds 9, 11, and 12 showed potent in vivo anti-inflammatory activity in transgenic zebrafish, while compound 8 exhibited significant proangiogenic activity in transgenic zebrafish.


Assuntos
Acremonium , Alcaloides , Peixe-Zebra , Animais , Anti-Inflamatórios/farmacologia , Fungos , Piridonas
14.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203466

RESUMO

Verticillum dahliae is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease. We previously found a trehalase-encoding gene (VdPT1) in V. dahliae being significantly up-regulated after sensing root exudates from a susceptible cotton variety. In this study, we characterized the function of VdPT1 in the growth and virulence of V. dahliae using its deletion-mutant strains. The VdPT1 deletion mutants (ΔVdPT1) displayed slow colony expansion and mycelial growth, reduced conidial production and germination rate, and decreased mycelial penetration ability and virulence on cotton, but exhibited enhanced stress resistance, suggesting that VdPT1 is involved in the growth, pathogenesis, and stress resistance of V. dahliae. Host-induced silencing of VdPT1 in cotton reduced fungal biomass and enhanced cotton resistance against V. dahliae. Comparative transcriptome analysis between wild-type and mutant identified 1480 up-regulated and 1650 down-regulated genes in the ΔVdPT1 strain. Several down-regulated genes encode plant cell wall-degrading enzymes required for full virulence of V. dahliae to cotton, and down-regulated genes related to carbon metabolism, DNA replication, and amino acid biosynthesis seemed to be responsible for the decreased growth of the ΔVdPT1 strain. In contrast, up-regulation of several genes related to glycerophospholipid metabolism in the ΔVdPT1 strain enhanced the stress resistance of the mutated strain.


Assuntos
Acremonium , Ascomicetos , Trealase , Verticillium , Trealase/genética , Virulência/genética , Gossypium/genética
15.
Environ Monit Assess ; 195(3): 395, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780023

RESUMO

In the present work, the potential of Cephalosporium strain in degrading the pre-treated (ultraviolet irradiation followed by nitric acid treatment) low-density polyethylene and high-density polyethylene films was investigated. Our observations revealed a significant weight reduction of 24.53 ± 0.73% and 18.22 ± 0.31% in pre-treated low-density polyethylene and high-density polyethylene films respectively, after 56 days of incubation with the Cephalosporium strain. Changes in the physicochemical properties of the mineral salt medium (MSM) were studied to assess the extent of biodegradation. The pH of the MSM decreased gradually during the incubation period, whereas its total dissolved solids and conductivity values increased steadily. Fourier transform infrared spectroscopy (FTIR) indicated the formation of hydroxyl and C = C groups in biodegraded low-density polyethylene films, while in the case of biodegraded high-density polyethylene films it indicated the [Formula: see text]CH2 stretching. Furthermore, the thermogravimetric analysis (TGA) revealed an enhancement in the thermal stabilities of both the LDPE and HDPE films post the biodegradation. Modifications in the polymer surface morphologies after UV irradiation, chemical treatment, and biodegradation steps were visualized via scanning electron microscopy (SEM) analysis. All our observations confirm the ability of the Cephalosporium strain in biodegrading the pre-treated LDPE and HDPE films.


Assuntos
Acremonium , Polietileno , Polietileno/química , Acremonium/metabolismo , Monitoramento Ambiental , Biodegradação Ambiental , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Fungal Genet Biol ; 159: 103667, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35041986

RESUMO

Acetolactate synthase (AHAS) catalyses the first common step in the biosynthesis pathways of three branched-chain amino acids (BCAAs) of valine, isoleucine and leucine. Here, we characterized one regulatory subunit (VdILV6) and three catalytic subunits (VdILV2A, VdILV2B and VdILV2C) of AHAS from the important cotton Verticillium wilt fungus Verticillium dahliae. Phenotypic analysis showed that VdILV6 knockout mutants were auxotrophic for valine and isoleucine and were defective in conidial morphogenesis, hypha penetration and virulence to cotton, and lost ability of microscletotial formation. The growth of single catalytic subunit gene knockout mutants were significantly inhibited by leucine at higher concentration and single catalytic subunit gene knockout mutants showed significantly reduced virulence to cotton. VdILV2B knockout also led to obviously reduced microscletotial formation and conidial production, VdILV2C knockout led to reduced conidial production. Further studies suggested that both feedback inhibition by leucine and the inhibition by AHAS inhibiting herbicides of tribenuron and bispyribac resulted in significantly down-regulated expression of the four subunit VdILVs genes (VdILV2A, VdILV2B, VdILV2C and VdILV6). Any single catalytic subunit gene knockout led to reduced expression of the other three subunit genes, whereas VdILV6 knckout induced increased expression of the three catalytic subunit genes. VdILV2B, VdILV2C and VdILV6 knockout resulted in increased expression of VdCPC1 regulator gene of the cross-pathway control of amino acid biosynthesis. Taken together, these results indicate multiple roles of four VdILVs genes in the biosynthesis of BCAAs, virulence, fungal growth and development in the filamentous fungi V. dahliae.


Assuntos
Acetolactato Sintase , Verticillium , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Acremonium , Aminoácidos de Cadeia Ramificada , Domínio Catalítico/genética , Proteínas Fúngicas/metabolismo , Isoleucina , Lactatos , Leucina , Doenças das Plantas/microbiologia , Esporos Fúngicos , Valina , Virulência/genética
17.
PLoS Pathog ; 16(7): e1008595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628727

RESUMO

Sarocladium zeae is a fungal endophyte of maize and can be found co-inhabiting a single seed with Fusarium verticillioides, a major mycotoxigenic food safety threat. S. zeae produces pyrrocidines A and B that inhibit the growth of F. verticillioides and may limit its spread within the seed to locations lacking S. zeae. Although coinhabiting single seeds, the fungi are generally segregated in separate tissues. To understand F. verticillioides' protective physiological response to pyrrocidines we sequenced the F. verticillioides transcriptome upon exposure to purified pyrrocidine A or B at sub-inhibitory concentrations. Through this work we identified a F. verticillioides locus FvABC3 (FVEG_11089) encoding a transporter critical for resistance to pyrrocidine. We also identified FvZBD1 (FVEG_00314), a gene directly adjacent to the fumonisin biosynthetic gene cluster that was induced several thousand-fold in response to pyrrocidines. FvZBD1 is postulated to act as a genetic repressor of fumonisin production since deletion of the gene resulted in orders of magnitude increase in fumonisin. Further, pyrrocidine acts, likely through FvZBD1, to shut off fumonisin biosynthesis. This suggests that S. zeae is able to hack the secondary metabolic program of a competitor fungus, perhaps as preemptive self-protection, in this case impacting a mycotoxin of central concern for food safety.


Assuntos
Acremonium , Fumonisinas/metabolismo , Fusarium/genética , Micoses/microbiologia , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Coinfecção , Resistência à Doença/genética , Genes Fúngicos , Micoses/metabolismo , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia
18.
Arch Microbiol ; 204(8): 489, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835894

RESUMO

Petroleum-based polymers are not susceptible to microorganisms because of its high molecular weight. Acid treatments convert the polymers into a more oxidized form having low molecular weight. The present in-vitro degradation study focuses on the potential of Cephalosporium species to degrade acid-treated polystyrene (PS) and low-density polyethylene (LDPE) films. A weight loss of around 12% and 13% was achieved for PS and LDPE films respectively in eight weeks of treatment with Cephalosporium species. Fourier transform infrared spectroscopy analysis showed the formation of hydroxyl and carbonyl groups in nitric acid treated PS and LDPE films, respectively. Scanning electron microscopy indicated modifications in the surface morphology of PS and LDPE films after chemical and microbial treatment. An increase in crystallinity of pre-treated polymer samples was observed after fungal treatment. The observations of present study confirmed the enzymatic deterioration and assimilation of pre-treated PS and LDPE samples by the microbial species.


Assuntos
Acremonium , Polietileno , Acremonium/metabolismo , Biodegradação Ambiental , Ácido Nítrico , Polietileno/metabolismo , Poliestirenos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
19.
BMC Infect Dis ; 22(1): 964, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581826

RESUMO

BACKGROUND: Fungal periprosthetic joint infections are rare. Acremonium osteoarticular infections are scarcely reported. Variable susceptibility to antifungal agents have been reported and optimal pharmacotherapy has yet to be established. Here we illustrate an Acremonium osteoarticular infection involving a prosthetic joint and present an antifungal regimen that had led to treatment success. CASE PRESENTATION: A 60-year-old female with a body mass index (BMI) of 40 had left total knee arthroplasty done in 2012 with a cementless implant for knee osteoarthritis. In 2019, the patient had asymptomatic, progressive osteolysis with fracture and migration of the femoral component warranting replacement. Eleven months later, the patient developed significant pain, redness, and swelling in the left leg and knee concerning for periprosthetic joint infection that failed outpatient antibiotic treatment. Further investigation revealed infection by Acremonium species. A revision of the joint was successfully completed, and the patient was placed on voriconazole for one year. Subsequent cultures did not yield any fungal growth. CONCLUSION: While an optimal antifungal regimen for periprosthetic joint infections has not been well established, voriconazole is a relatively safe and effective agent that can be used as a long-term therapy. With variable susceptibility testing in reported isolates, individualized antifungal susceptibility should be used to guide therapy for Acremonium infections.


Assuntos
Acremonium , Micoses , Infecções Relacionadas à Prótese , Feminino , Humanos , Pessoa de Meia-Idade , Antifúngicos/uso terapêutico , Voriconazol/uso terapêutico , Infecções Relacionadas à Prótese/microbiologia , Micoses/tratamento farmacológico , Micoses/etiologia
20.
Appl Microbiol Biotechnol ; 106(19-20): 6413-6426, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36114850

RESUMO

Cephalosporins are currently the most widely used antibiotics in clinical practice. The main strain used for the industrial production cephalosporin C (CPC) is Acremonium chrysogenum. CPC has the advantages of possessing a broad antibacterial spectrum and strong antibacterial activity. However, the yield and titer of cephalosporins obtained from A. chrysogenum are much lower than penicillin, which is also a ß-lactam antibiotic produced by Penicillium chrysogenum. Molecular biology research into A. chrysogenum has focused on gene editing technologies, multi-omics research which has provided information on the differences between high- and low-yield strains, and metabolic engineering involving different functional genetic modifications and hierarchical network regulation to understand strain characteristics. Furthermore, optimization of the fermentation process is also reviewed as it provides the optimal environment to realize the full potential of strains. Combining rational design to control the metabolic network, high-throughput screening to improve the efficiency of obtaining high-performance strains, and real-time detection and controlling in the fermentation process will become the focus of future research in A. chrysogenum. This minireview provides a holistic and in-depth analysis of high-yield mechanisms and improves our understanding of the industrial value of A. chrysogenum. KEY POINTS: • Review of the advances in A. chrysogenum characteristics improvement and process optimization • Elucidate the molecular bases of the mechanisms that control cephalosporin C biosynthesis and gene expression in A. chrysogenum • The future development trend of A. chrysogenum to meet industrial needs.


Assuntos
Acremonium , Acremonium/genética , Acremonium/metabolismo , Antibacterianos/metabolismo , Cefalosporinas , Fermentação , Penicilinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA