Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mar Drugs ; 22(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057413

RESUMO

From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology.


Assuntos
Organismos Aquáticos , Descoberta de Drogas , Humanos , Animais , Descoberta de Drogas/métodos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Farmacopeias como Assunto , Oceanos e Mares , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química
2.
Mar Drugs ; 22(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39330307

RESUMO

Marine natural products comprise unique chemical structures and vast varieties of biological activities. This review aims to summarize halichondrin, a marine natural product, and its synthetic analogs along with its therapeutic properties and mechanisms. Halichondrin and its analogs, derived from marine sponges, exhibit potent antineoplastic properties, making them promising candidates for cancer therapeutics. These compounds, characterized by their complex molecular structures, have demonstrated significant efficacy in inhibiting microtubule dynamics, leading to cell cycle arrest and apoptosis in various cancer cell lines. Several types of halichondrins such as halichondrins B, C, norhalichondrin B, and homohalichondrin B have been discovered with similar anticancer and antitumor characteristics. Since naturally available halichondrins show hurdles in synthesis, recent advancements in synthetic methodologies have enabled the development of several halichondrin analogs, such as E7389 (eribulin), which have shown improved therapeutic indices. Eribulin has shown excellent immunomodulatory properties by several mechanisms such as reprogramming tumor microenvironments, facilitating the infiltration and activation of immune cells, and inhibiting microtubule dynamics. Despite promising results, challenges remain in the synthesis and clinical application of these compounds. This review explores the mechanisms underlying the immunomodulatory activity of halichondrin and its analogs in cancer therapy, along with their clinical applications and potential for future drug development.


Assuntos
Antineoplásicos , Poríferos , Animais , Poríferos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Furanos/farmacologia , Furanos/química , Furanos/isolamento & purificação , Organismos Aquáticos , Cetonas/farmacologia , Cetonas/química , Cetonas/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Macrolídeos/farmacologia , Macrolídeos/química , Policetídeos de Poliéter , Éteres Cíclicos
3.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731500

RESUMO

A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.


Assuntos
Compostos Fitoquímicos , Plantas Medicinais , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , África , Animais
4.
Inflammopharmacology ; 32(4): 2477-2491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717557

RESUMO

Micromeria biflora (M.B) Benth has proven anti-inflammatory efficacy, thereby, the goal of the current investigation was to assess the anti-arthritic potential of M.B ethanolic extract and fractions as well as to investigate the likely mechanism of action. The effectiveness of M.B against acute arthritic manifestations was assessed using an arthritic model prompted by formaldehyde, whereas a chronic model was developed using an adjuvant called Complete Freund's in Sprague-Dawley rats. Weekly evaluations were conducted for parameters involving paw volume, body weight, and arthritic score; at the completion of the CFA model, hematological, biochemical and oxidative stress parameters as well as the level of various mediators (PGE2, IL-1ß, TNFα, IL6, MMP2, 3, 9, VEGF, NF-ĸB, IL-10, and IL-4) were evaluated. The results demonstrated the plant's ability to treat arthritis by showing a significant decrease in paw volume, arthritic score, and histological characteristics. The levels of NF-ĸB, MMP2, 3, 9, IL6, IL1ß, TNFα, and VEGF were all significantly reduced after treatment with plant extract and fractions. Plant extract and its fractions substantially preserved body weight loss, oxidative stress markers and levels of IL-4 and 1L-10. PGE2 levels were also shown to be reduced in the treatment groups, supporting the M.B immunomodulatory ability. Hematological and biochemical indicators were also normalized after M.B administration. Outcomes of the study validated the anti-arthritic and immunomodulatory attributes of M.B probably through modulating oxidative stress, inflammatory, pro-inflammatory and anti-inflammatory biomarkers.


Assuntos
Anti-Inflamatórios , Artrite Experimental , Citocinas , Estresse Oxidativo , Extratos Vegetais , Ratos Sprague-Dawley , Animais , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Ratos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Masculino , Artrite Experimental/tratamento farmacológico , Metaloproteases , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Lamiaceae/química , Inflamação/tratamento farmacológico , Feminino , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores
5.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
6.
Molecules ; 29(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675613

RESUMO

Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.


Assuntos
Acne Vulgar , Antibacterianos , Anti-Inflamatórios , Antioxidantes , Saponinas , Humanos , Acne Vulgar/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Fatores Imunológicos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/isolamento & purificação , Melanthiaceae/química , Liliaceae/química
7.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164406

RESUMO

Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure-activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure-activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.


Assuntos
Anti-Inflamatórios/farmacologia , Agentes de Imunomodulação/farmacologia , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Asteraceae/química , Descoberta de Drogas , Humanos , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Lactonas/química , Lactonas/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
8.
Pharm Biol ; 60(1): 509-524, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35234563

RESUMO

CONTEXT: Since the outbreak of SARS-CoV-2, researchers have been working on finding ways to prevent viral entry and pathogenesis. Drug development from naturally-sourced pharmacological constituents may be a fruitful approach to COVID-19 therapy. OBJECTIVE: Most of the published literature has focussed on medicinal plants, while less attention has been given to biodiverse sources such as animal, marine, and microbial products. This review focuses on highlighting natural products and their derivatives that have been evaluated for antiviral, anti-inflammatory, and immunomodulatory properties. METHODS: We searched electronic databases such as PubMed, Scopus, Science Direct and Springer Link to gather raw data from publications up to March 2021, using terms such as 'natural products', marine, micro-organism, and animal, COVID-19. We extracted a number of documented clinical trials of products that were tested in silico, in vitro, and in vivo which paid specific attention to chemical profiles and mechanisms of action. RESULTS: Various classes of flavonoids, 2 polyphenols, peptides and tannins were found, which exhibit inhibitory properties against viral and host proteins, including 3CLpro, PLpro, S, hACE2, and NF-κB, many of which are in different phases of clinical trials. DISCUSSION AND CONCLUSIONS: The synergistic effects of logical combinations with different mechanisms of action emphasizes their value in COVID19 management, such as iota carrageenan nasal spray, ermectin oral drops, omega-3 supplementation, and a quadruple treatment of zinc, quercetin, bromelain, and vitamin C. Though in vivo efficacy of these compounds has yet to be established, these bioproducts are potentially useful in counteracting the effects of SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Tratamento Farmacológico da COVID-19 , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/administração & dosagem , Antivirais/isolamento & purificação , Produtos Biológicos/isolamento & purificação , COVID-19/virologia , Desenvolvimento de Medicamentos/métodos , Sinergismo Farmacológico , Humanos , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/isolamento & purificação , Agentes de Imunomodulação/farmacologia
9.
BMC Microbiol ; 21(1): 190, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34171998

RESUMO

BACKGROUND: Fungal cell wall polysaccharides maintain the integrity of fungi and interact with host immune cells. The immunomodulation of fungal polysaccharides has been demonstrated in previous studies. However, the effect of chitin-rich heteroglycan extracted from Sporothrix schenckii sensu stricto on the immune response has not been investigated. RESULTS: In this study, chitin-rich heteroglycan was extracted from S. schenckii sensu stricto, and immunomodulation was investigated via histopathological analysis of skin lesions in a mouse model of sporotrichosis and evaluation of the phagocytic function and cytokine secretion of macrophages in vitro. The results showed that the skin lesions regressed and granulomatous inflammation was reduced in infected mice within 5 weeks. Moreover, heteroglycan promoted the fungal phagocytosis by macrophages and modulated the cytokine secretion. Heteroglycan upregulated TNF-α expression early at 24 h and IL-12 expression late at 72 h after incubation, which might result from moderate activation of macrophages and contribute to the subsequent adaptive immune response. CONCLUSIONS: Chitin-rich heteroglycan extracted from S. schenckii sensu stricto potentiated fungal clearance in a mouse model of sporotrichosis. Moreover, chitin-rich heteroglycan promoted fungus phagocytosis by macrophages and modulated cytokines secretion. These results might indicate that chitin-rich heteroglycan could be considered as an immunomodulator used in the treatment of sporotrichosis.


Assuntos
Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Sporothrix/química , Esporotricose/tratamento farmacológico , Animais , Quitina/química , Quitina/farmacologia , Quitina/uso terapêutico , Fungos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Camundongos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
10.
Mar Drugs ; 19(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203925

RESUMO

The aim of this study was to evaluate the effects of ingesting fucoidan derived from Okinawa mozuku (Cladosiphon okamuranus) on natural killer (NK) cell activity and to assess its safety in healthy adults via a randomized, double-blind, parallel-group, placebo-controlled pilot study. Subjects were randomly divided into two groups-a placebo group (ingesting citric acid, sucralose, and caramel beverages; n = 20; 45.5 ± 7.8 years (mean ± standard deviation)) and a fucoidan group (3.0 g/day from beverages; n = 20; 47.0 ± 7.6 years); after 12 weeks, blood, biochemical, and immunological tests were performed. Clinically adverse events were not observed in any of the tests during the study period. In addition, adverse events due to the test food were not observed. In the immunological tests, NK cell activity was significantly enhanced at 8 weeks in the fucoidan group, compared to before ingestion (0 weeks). In addition, a significantly enhanced NK cell activity was observed in male subjects at 8 weeks, compared with the placebo group. These results confirm that Okinawa mozuku-derived fucoidan enhances NK cell activity and suggest that it is a safe food material.


Assuntos
Produtos Biológicos/farmacologia , Agentes de Imunomodulação/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Phaeophyceae/química , Polissacarídeos/farmacologia , Adulto , Idoso , Produtos Biológicos/isolamento & purificação , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Agentes de Imunomodulação/isolamento & purificação , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Polissacarídeos/isolamento & purificação
11.
Inflammopharmacology ; 29(4): 1201-1210, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34241784

RESUMO

Marine sponges and their associated microbiota are multicellular animals known to produce metabolites with interesting pharmacological properties playing a pivotal role against a plethora of pathologic disorders such as inflammation, cancer and infections. Characellide A and B belong to a novel class of glycolipopeptides isolated from the deep sea marine sponge Characella pachastrelloides. In this study, we have evaluated the effects of characellide A and B on cytokine and chemokine release from human peripheral blood mononuclear cells (PBMC). Characellide A induces a concentration- and time-dependent CXCL8, IL-6 and TNF-α release from PBMC. This production is mediated by the induction of gene transcription. Moreover, cytokine/chemokine release induced by characellide A from PBMC is CD1d-dependent because a CD1d antagonist, 1,2-bis(diphenylphosphino)ethane [DPPE]-polyethylene glycolmonomethylether [PEG], specifically inhibits characellide A-induced activation of PBMC. In conclusion, characellide A is a novel modulator of adaptative/innate immune responses. Further studies are needed to understand its potential pharmacological application.


Assuntos
Fatores Biológicos/farmacologia , Agentes de Imunomodulação/farmacologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Poríferos , Animais , Fatores Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Agentes de Imunomodulação/isolamento & purificação , Imunomodulação/efeitos dos fármacos , Imunomodulação/fisiologia , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/imunologia , Leucócitos Mononucleares/imunologia
12.
Inflammopharmacology ; 29(5): 1399-1412, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510276

RESUMO

BACKGROUND: Mesenchymal stem cells-derived adipose tissue (AT-MSCs) are recognized for the treatment of inflammatory diseases including multiple sclerosis (MS). Hypericum perforatum (HP) is an anti-inflammatory pharmaceutical plant with bioactive compounds. Plant tissue culture is a technique to improve desired pharmacological potential. The aim of this study was to compare the anti-inflammatory and proliferative effects of callus with field-growing plant extracts of HP on AT-MSCs derived from MS patients. MATERIALS AND METHODS: AT-MSCs were isolated and characterized. HP callus was prepared and exposure to light spectrum (blue, red, blue-red, and control). Total phenols, flavonoids, and hypericin of HP callus and plant extracts were measured. The effects of HP extracts concentrations on proliferation were evaluated by MTT assay. Co-culture of AT-MSCs: PBMCs were challenged by HP plant and callus extracts, and Tregs percentage was assessed by flow cytometry. RESULTS: Identification of MSCs was performed. Data showed that blue light could stimulate total phenols, flavonoids, and hypericin. MTT test demonstrated that plant extract in concentrations (0.03, 1.2, 2.5 and 10 µg/ml) and HP callus extract in 10 µg/ml significantly increased. Both HP extracts lead to an increase in Tregs percentage in all concentrations. In particular, a comparison between HP plant and callus extracts revealed that Tregs enhanced 3-fold more than control groups in the concentration of 10 µg/ml callus. CONCLUSIONS: High concentrations of HP extracts showed effectiveness on AT-MSCs proliferation and immunomodulatory properties with a certain consequence in callus extract. HP extracts may be considered as supplementary treatments for the patients who receiving MSCs transplantation.


Assuntos
Hypericum/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Extratos Vegetais/farmacologia , Tecido Adiposo/citologia , Adulto , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Humanos , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/isolamento & purificação , Agentes de Imunomodulação/farmacologia , Células-Tronco Mesenquimais/citologia , Esclerose Múltipla/imunologia , Extratos Vegetais/administração & dosagem
13.
Int J Biol Macromol ; 276(Pt 1): 133459, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945333

RESUMO

A new polysaccharide, named SP40015A01, was obtained from Saposhnikoviae Radix by water extraction, isolation and purification. SP40015A01 (9.7 × 105 Da) is composed of Rhamnose (Rha), Galacturonic acid (GalA), Galactose (Gal), and Arabinose (Ara) with the proportion of 1.6:85.6:5.8:7.6. The backbone of SP40015A01 is composed of 3-α-GalAp, 2-α-GalAp, 2,3-ß-GalAp and 2,3-ß-Galp, and branched at C3 of 2,3-ß-GalAp, C3 of 2,3-ß-Galp. Zebrafish experiments were used to explore the immunomodulatory activity of SP40015A01. Results showed that SP40015A01 could significantly improve the neutrophils density of immunocompromised zebrafish and reduce the content of nitric oxide (NO) and interleukin-1ß (IL-1ß). This study demonstrated that SP40015A01 has significant immunomodulatory activity, which can improve the neutrophils density and reduce inflammatory factor content, suggesting SP40015A01 may be a potential immunomodulator in Saposhnikoviae Radix (SR) for treatment of hypoimmunity related disease. This study supplemented the research on the polysaccharide components in traditional Chinese medicine and provided a scientific explanation for the development and clinical applications of SR.


Assuntos
Apiaceae , Óxido Nítrico , Polissacarídeos , Peixe-Zebra , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Apiaceae/química , Óxido Nítrico/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Interleucina-1beta/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Ácidos Hexurônicos
14.
Artigo em Inglês | MEDLINE | ID: mdl-38810897

RESUMO

Cathelicidins are important antimicrobial peptides in various vertebrate species where they are crucial parts of the innate immune system. The current understanding of amphibian cathelicidins is limited, particularly with regard to their immunomodulatory effects. To address this knowledge gap, we produced the cDNA sequence of the cathelicidin gene from a skin transcriptome of the Chinese spiny frog Quasipaa spinosa. The amino acid sequence of the Quasipaa spinosa cathelicidin (QS-CATH) was predicted to consist of a signal peptide, a cathelin domain, and a mature peptide. Comparative analysis of the QS-CATH amino acid sequence with that of other amphibian cathelicidins revealed high variability in the functional mature peptide among amphibians, whereas the cathelin domain was conserved. The QS-CATH gene was expressed in several tissues, with the highest level of expression in the spleen. Upregulation of QS-CATH after Aeromonas hydrophila infection occurred in the kidney, gut, spleen, skin, and liver. Chemically synthesized QS-CATH exhibited pronounced antibacterial activity against Shigella flexneri, Staphylococcus warneri, Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Furthermore, QS-CATH disrupted the cell membrane integrity of S. flexneri, as evidenced by a lactate dehydrogenase release assay, and it hydrolyzed the genomic DNA of S. flexneri. Additionally, QS-CATH elicited chemotaxis and modulated the expression of inflammatory cytokine genes in RAW264.7 mouse leukemic monocyte/macrophage cells. These findings confirm the antimicrobial effects of amphibian cathelicidin and its ability to influence immune cell function. This will expedite the potential utilization of amphibian antimicrobial peptides as therapeutic agents.


Assuntos
Anuros , Catelicidinas , Animais , Camundongos , Sequência de Aminoácidos , Fatores Imunológicos/farmacologia , Aeromonas hydrophila , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/isolamento & purificação , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Células RAW 264.7 , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/imunologia , População do Leste Asiático
15.
Fitoterapia ; 176: 105988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703915

RESUMO

Traditional medicinal plants have been used for centuries for their immunomodulatory properties and therapeutic potentials. The present study aims to investigate the immunomodulatory constituents from traditional medicinal plant, Tinospora cordifolia (willd.). Our study resulted in the isolation of new compound, 27-hydroxy octacosyl ferulate (1) along with eleven known compounds (2-12). The structures of the isolated compounds were characterized by combination of NMR (1D and 2D) and Mass spectroscopic methods. The hemisynthesis of compound 12 (ferulic acid) yielded (12a-12d and 12e-12 m) derivatives. Further, the isolated compounds and synthesized derivatives were assessed for their immunomodulatory potentials by evaluating their cytotoxicity and pro-inflammatory effects against macrophage cells (IL-6) and DC activation markers (CD 11c and 86). The biological results indicated that crude extract displayed potent immunomodulatory activity while isolated compounds and synthetic analogues showed moderate activity. Among the tested compounds, new compound (1), quercetin (10) and derivatives 12b, 12c found to be non-cytotoxic and displayed immunomodulatory potentials. Therefore, these compounds can be studied for autoimmunity and other immune suppressing conditions.


Assuntos
Agentes de Imunomodulação , Compostos Fitoquímicos , Tinospora , Tinospora/química , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Animais , Camundongos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Interleucina-6
16.
Curr Top Med Chem ; 24(12): 1075-1100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551050

RESUMO

BACKGROUND: Immunomodulation is the modification of immune responses to control disease progression. While the synthetic immunomodulators have proven efficacy, they are coupled with toxicity and other adverse effects, and hence, the efforts were to identify natural phytochemicals with immunomodulatory potential. OBJECTIVE: To understand the immunomodulatory properties of various phytochemicals and investigate them in Echinacea species extracts using an in silico approach. METHODOLOGY: Several scientific database repositories were searched using different keywords: "Phytochemicals," "Alkaloids," "Polyphenols," "Flavonoids," "Lectins," "Glycosides," "Tannins," "Terpenoids," "Sterols," "Immunomodulators," and "Human Immune System" without any language restriction. Additionally, the study specifically investigated the immunomodulatory properties of Echinacea species extracts using gene expression analysis of GSE12259 from NCBI-GEO through the Bioconductor package GEOquery and limma. RESULTS: A total of 182 studies were comprehensively analyzed to understand immunomodulatory phytochemicals. The in silico analysis highlighted key biological processes (positive regulation of cytokine production, response to tumor necrosis factor) and molecular functions (cytokine receptor binding, receptor-ligand activity, and cytokine activity) among Echinacea species extracts contributing to immune responses. Further, it also indicated the association of various metabolic pathways, i.e., pathways in cancer, cytokine-cytokine receptor interaction, NF-kappa B, PI3K-Akt, TNF, MAPK, and NOD-like receptor signaling pathways, with immune responses. The study revealed various hub targets, including CCL20, CCL4, GCH1, SLC7A11, SOD2, EPB41L3, TNFAIP6, GCLM, EGR1, and FOS. CONCLUSION: The present study presents a cumulative picture of phytochemicals with therapeutic benefits. Additionally, the study also reported a few novel genes and pathways in Echinacea extracts by re-analyzing GSE 12259 indicating its anti-inflammatory, anti-viral, and immunomodulatory properties.


Assuntos
Biologia Computacional , Compostos Fitoquímicos , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Echinacea/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
17.
Biomed Pharmacother ; 179: 117360, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232387

RESUMO

Macrophages undergo activation in response to multiple stimuli, including pathogens, growth factors and natural products. The inflammatory response and oxidative stress play critical roles in such macrophage activation. Some natural products reportedly promote immunoregulatory effects and the control of macrophage activation. Caryocar villosum (Cv), a native amazon plant, contains compounds that are an important source of molecules capable of macrophage activation. Herein, we demonstrate the immunomodulatory effects of oil obtained from Caryocar villosum (CvO) on macrophages. Macrophages were treated with varying concentrations of CvO, and resulting cellular morphological and functional changes were evaluated, including the production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and phagocytic activity. Treatment of cells with 50 and 100 µg/mL CvO induced morphological and physiological alterations in the macrophages, such as increased cell surface and phagocytic activity. Additionally, treatment increased the productions of inflammatory cytokines (INF-γ, TNF-α, IL-6) and anti-inflammatory cytokines (IL-17 and IL-10) by macrophages, and significantly decreased ROS levels. In conclusion, these data suggest that, due to molecular diversity, CvO promoted an immunomodulatory effect on macrophages, mediated by an increased production of cytokines, and inhibition of ROS generation and phagocytic activity. Thus, CvO presents potential as a therapeutic agent for the treatment of inflammatory and non-inflammatory diseases.


Assuntos
Citocinas , Macrófagos , Óxido Nítrico , Fagocitose , Óleos de Plantas , Espécies Reativas de Oxigênio , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Citocinas/metabolismo , Fagocitose/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óleos de Plantas/farmacologia , Células RAW 264.7 , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Fatores Imunológicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ericales/química
18.
Curr Med Chem ; 31(36): 5969-5988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445701

RESUMO

BACKGROUND: Punica granatum L. is well-known for its multifaceted therapeutic potential, including anti-inflammatory and immunomodulatory activities. AIM: This study aimed to characterize an immunomodulatory compound isolated from Punica granatum L. using a bioactivity-guided approach. METHODS: Chromatographic techniques were adopted for isolation and purification of secondary metabolites. In silico, in vitro, and in vivo methods were performed to characterize the therapeutic potential of the isolated compound. RESULTS: Using preparative thin-layer chromatography, rosmarinic acid was isolated from F4 (column chromatography product obtained from a butanolic fraction of the extract). The impact of rosmarinic acid was assessed in rats using the neutrophil adhesion test, DTH response, and phagocytic index. In immunized rats, rosmarinic acid demonstrated significant immunomodulatory potential. Computational experiments, like molecular docking and molecular dynamics, were also conducted against two targeted receptors, Cereblon (PDB ID: 8AOQ) and human CD22 (PDB ID: 5VKM). Computational studies suggested that an increase in phagocytic index by rosmarinic acid could be attributed to inhibiting Cereblon and CD22. Pharmacokinetics and toxicity prediction also suggested the drug-likeness of rosmarinic acid. CONCLUSION: Rosmarinic acid is a potential candidate, but extensive research needs to be done to translate this molecule from bench to bedside.


Assuntos
Cinamatos , Depsídeos , Simulação de Acoplamento Molecular , Punica granatum , Ácido Rosmarínico , Cinamatos/química , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Depsídeos/química , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Animais , Humanos , Ratos , Punica granatum/química , Masculino , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Simulação por Computador , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Ratos Wistar , Simulação de Dinâmica Molecular , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação
19.
Int J Biol Macromol ; 278(Pt 3): 134947, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173803

RESUMO

This study aimed to optimize the extraction of Hericium erinaceus polysaccharides (HEP) using ultrasound-assisted enzymatic extraction combined with Plackett-Burman design (PBD) and response surface methodology (RSM). The optimal extraction conditions were identified as: 33 min extraction time, 30:1 liquid to material ratio, 38 °C extraction temperature, 9 g/kg cellulase amount, pH 4, and 20 % ethanol concentration. Under these conditions, the extraction yield of HEP was 5.87 ± 0.16 %, consistent with the predicted results. Additionally, the potential immunomodulatory activity of HEP on RAW 264.7 macrophage was evaluated. The results revealed that HEP improved the immunostimulatory activity of RAW264.7 cells, evident from increased production of IL-6 and TNF-α. These findings suggest that HEP is capable of enhancing the immune activity of RAW 264.7 macrophage.


Assuntos
Hericium , Macrófagos , Camundongos , Animais , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Hericium/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Interleucina-6/metabolismo
20.
Fitoterapia ; 178: 106174, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122119

RESUMO

Under the guidance of MS/MS-based molecular networking, five new clerodane diterpenoid glucosides, tinosinesides R-V (1-5), along with 15 known diterpenoids (6-20), were isolated from the stems of Tinospora sinensis. Compound 1 represents the first example of diterpenoid bearing a thio sugar and compound 5 is the first 18,19-dinor-clerodane with cis-fused A/B ring. The structures of the new compounds were elucidated by spectroscopic means, and their absolute configurations were established on the basis of time-dependent density functional theory (TD-DFT) based electronic circular dichroism (ECD) calculation and chemical methods. Selected compounds were evaluated for their immunomodulatory effect and several compounds could enhance the proliferation of B lymphocytes. Preliminary mechanistic studies disclosed that 3 could promote B cell generation and inhibit B cell differentiation.


Assuntos
Linfócitos B , Diterpenos Clerodânicos , Compostos Fitoquímicos , Tinospora , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/isolamento & purificação , Diterpenos Clerodânicos/química , Tinospora/química , Estrutura Molecular , Linfócitos B/efeitos dos fármacos , Animais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Caules de Planta/química , China , Camundongos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Agentes de Imunomodulação/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA