Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Neurosci ; 40(15): 3052-3062, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32132265

RESUMO

Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing.SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions.


Assuntos
Astrócitos/fisiologia , Barorreflexo/fisiologia , Núcleo Solitário/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Masculino , Neurônios Aferentes/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/fisiologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Proteínas SNARE/fisiologia , Serotonina/farmacologia , Estimulação do Nervo Vago
2.
Am J Physiol Heart Circ Physiol ; 320(2): H699-H712, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306443

RESUMO

Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.


Assuntos
Trifosfato de Adenosina/farmacologia , Encéfalo/irrigação sanguínea , Sinalização do Cálcio/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/efeitos dos fármacos , Animais , Capilares/citologia , Bovinos , Células Cultivadas , Inositol 1,4,5-Trifosfato/metabolismo , Pericitos/metabolismo , Fenótipo , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Receptores Purinérgicos P2Y2/metabolismo
3.
Toxicol Appl Pharmacol ; 407: 115240, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32941855

RESUMO

Agents that promote DNA repair may be useful as radioprotectants to minimize side effects such as radiation pneumonia caused by damage to normal cells during radiation therapy to treat lung cancer. We have reported that extracellular nucleotides and nucleosides are involved in the P2 or P1 receptor-mediated DNA damage response (DDR) after γ-irradiation. Here, we investigated the effects of ATP, UTP, GTP, ITP and their metabolites on the γH2AX/53BP1 focus formation in nuclei (a measure of γ-irradiation-induced DDR) and the survival of γ-irradiated immortalized human bronchial epithelial (BEAS-2B) cells. Fluorescence immunostaining showed that ATP and ADP increase DDR and DNA repair, and exhibit radioprotective effects as evaluated by colony formation assay. These effects of ATP or ADP were blocked by inhibitors of P2X7 or P2Y12 receptor, respectively, and by ERK1/2 inhibitor. ATP and ADP enhanced phosphorylation of ERK1/2 by suppressing MKP-1 and MKP-3 expression after γ-irradiation. These results indicate that ATP and ADP exhibit radioprotective effects by phosphorylation of ERK1/2 via activation of P2X7 and P2Y12 receptors, respectively, to promote γ-irradiation-induced DDR and DNA repair. ATP and ADP appear to be candidates for radioprotectants to reduce damage to non-cancerous cells during lung cancer radiotherapy by promoting DDR and DNA repair.


Assuntos
Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Raios gama , Agonistas do Receptor Purinérgico P2X/farmacologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Protetores contra Radiação/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Receptores Purinérgicos P2Y12/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaio de Unidades Formadoras de Colônias , Dano ao DNA/efeitos da radiação , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação
4.
Cell Mol Life Sci ; 76(3): 561-576, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30406277

RESUMO

P2Y12 receptor (P2Y12-R) is one of the major targets for drug inhibiting platelet aggregation in the treatment/prevention of arterial thrombosis. However, the clinical use of P2Y12-R antagonists faces some limitations, such as a delayed onset of action (clopidogrel) or adverse effect profile (ticagrelor, cangrelor), justifying the development of a new generation of P2Y12-R antagonists with a better clinical benefit-risk balance. Although the recent concept of biased agonism offers the possibility to alleviate undesirable adverse effects while preserving therapeutic outcomes, it has never been explored at P2Y12-R. For the first time, using highly sensitive BRET2-based probes, we accurately delineated biased ligand efficacy at P2Y12-R in living HEK293T cells on G protein activation and downstream effectors. We demonstrated that P2Y12-R displayed constitutive Gi/o-dependent signaling that is impaired by the R122C mutation, previously associated with a bleeding disorder. More importantly, we reported the biased inverse agonist efficacy of cangrelor and ticagrelor that could underlie their clinical efficacy. Our study points out that constitutive P2Y12-R signaling is a normal feature of the receptor that might be essential for platelets to respond faster to a vessel injury. From a therapeutic standpoint, our data suggest that the beneficial advantages of antiplatelet drugs might be more related to inverse agonism at P2Y12-R than to antagonism of ADP-mediated signaling. In the future, deciphering P2Y12-R constitutive activity should allow the discovery of more selective biased P2Y12-R blockers demonstrating therapeutic advantages over classical antiplatelet drugs by improving therapeutic outcomes and concomitantly relieving undesirable adverse effects.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Ticagrelor/farmacologia , Monofosfato de Adenosina/farmacologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Modelos Biológicos , Mutação , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/ultraestrutura , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/genética , Transdução de Sinais/efeitos dos fármacos , Trombose/tratamento farmacológico , Trombose/fisiopatologia
5.
Mediators Inflamm ; 2020: 2545682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061823

RESUMO

Leishmaniasis is a neglected tropical disease caused by an intracellular parasite of the genus Leishmania. Damage-associated molecular patterns (DAMPs) such as UTP and ATP are released from infected cells and, once in the extracellular medium, activate P2 purinergic receptors. P2Y2 and P2X7 receptors cooperate to control Leishmania amazonensis infection. NLRP3 inflammasome activation and IL-1ß release resulting from P2X7 activation are important for outcomes of L. amazonensis infection. The cytokine IL-1ß is required for the control of intracellular parasites. In the present study, we investigated the involvement of the P2Y2 receptor in the activation of NLRP3 inflammasome elements (caspase-1 and 11) and IL-1ß secretion during L. amazonensis infection in peritoneal macrophages as well as in a murine model of cutaneous leishmaniasis. We found that 2-thio-UTP (a selective P2Y2 agonist) reduced parasite load in L. amazonensis-infected murine macrophages and in the footpads and lymph nodes of infected mice. The antiparasitic effects triggered by P2Y2 activation were not observed when cells were pretreated with a caspase-1 inhibitor (Z-YVAD-FMK) or in macrophages from caspase-1/11 knockout mice (CASP-1,11-/-). We also found that UTP treatment induced IL-1ß secretion in wild-type (WT) infected macrophages but not in cells from CASP-1,11-/- mice, suggesting that caspase-1 activation by UTP triggers IL-1ß secretion in L. amazonensis-infected macrophages. Infected cells pretreated with IL-1R antagonist did not show reduced parasitic load after UTP and ATP treatment. Our in vivo experiments also showed that intralesional UTP treatment reduced both parasite load (in the footpads and popliteal lymph nodes) and lesion size in wild-type (WT) and CASP-11-/- but not in CASP-1,11-/- mice. Taken together, our findings suggest that P2Y2R activation induces CASP-1 activation and IL-1ß secretion during L. amazonensis infection. IL-1ß/IL-1R signaling is crucial for P2Y2R-mediated protective immune response in an experimental model of cutaneous leishmaniasis.


Assuntos
Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/genética , Feminino , Humanos , Interleucina-1beta/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Transdução de Sinais/efeitos dos fármacos , Uridina Trifosfato/farmacologia
6.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751703

RESUMO

Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O2 and CO2/H+ homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 µM) had negligible effects on basal [Ca2+]i in isolated rat type II cells. However, DA strongly inhibited [Ca2+]i elevations (Δ[Ca2+]i) evoked by the P2Y2R agonist UTP (100 µM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 µM). As expected, acute hypercapnia (10% CO2; pH 7.4), or high K+ (30 mM) caused Δ[Ca2+]i in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca2+]i in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca2+]i in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca2+]i in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca2+]i in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.


Assuntos
Corpo Carotídeo/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D2/genética , Receptores Purinérgicos P2Y2/genética , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Corpo Carotídeo/efeitos dos fármacos , Corpo Carotídeo/crescimento & desenvolvimento , Homeostase/genética , Hidrogênio/metabolismo , Oxigênio/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Sulpirida/farmacologia , Uridina Trifosfato/farmacologia
7.
Am J Physiol Renal Physiol ; 316(4): F758-F767, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724104

RESUMO

Stimulation of metabotropic Gq-coupled purinergic P2Y2 receptors decreases activity of the epithelial Na+ channel (ENaC) in renal principal cells of the distal nephron. The physiological consequences of P2Y2 receptor signaling disruption in the P2Y2 receptor knockout mouse are decreased Na+ excretion and increased arterial blood pressure. However, because of the global nature of this knockout model, the quantitative contribution of ENaC and distal nephron compared with that of upstream renal vascular and tubular elements to changes in urinary excretion and arterial blood pressure is obscure. Moreover, it is uncertain whether stimulation of P2Y2 receptor inhibition of ENaC is sufficient to drive renal (urinary) Na+ excretion (UNaV). Here, using a pharmacogenetic approach and selective agonism of the P2Y2 receptor, we test the sufficiency of targeted stimulation of Gq signaling in principal cells of the distal nephron and P2Y2 receptors to increase UNaV. Selective stimulation of the P2Y2 receptor with the ligand MRS2768 decreased ENaC activity in freshly isolated tubules (as assessed by patch-clamp electrophysiology) and increased UNaV (as assessed in metabolic cages). Similarly, selective agonism of hM3Dq-designer receptors exclusively activated by designer drugs (DREADD) restrictively expressed in principal cells of the distal nephron with clozapine- N-oxide decreased ENaC activity and, consequently, increased UNaV. Clozapine- N-oxide, when applied to control littermates, failed to affect ENaC and UNaV. This study represents the first use of pharmacogenetic (DREADD) technology in the renal tubule and demonstrated that selective activation of the P2Y2 receptor and Gq signaling in principal cells is sufficient to promote renal salt excretion.


Assuntos
Rim/metabolismo , Farmacogenética , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Receptores Purinérgicos P2Y2/genética , Sódio/urina , Animais , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Feminino , Túbulos Renais/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos , Camundongos Knockout , Néfrons/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Cloreto de Sódio/metabolismo
8.
Am J Physiol Endocrinol Metab ; 317(1): E25-E41, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912960

RESUMO

Fructose is widely used as a sweetener in processed food and is also associated with metabolic disorders, such as obesity. However, the underlying cellular mechanisms remain unclear, in particular, regarding the pancreatic ß-cell. Here, we investigated the effects of chronic exposure to fructose on the function of insulinoma cells and isolated mouse and human pancreatic islets. Although fructose per se did not acutely stimulate insulin exocytosis, our data show that chronic fructose rendered rodent and human ß-cells hyper-responsive to intermediate physiological glucose concentrations. Fructose exposure reduced intracellular ATP levels without affecting mitochondrial function, induced AMP-activated protein kinase activation, and favored ATP release from the ß-cells upon acute glucose stimulation. The resulting increase in extracellular ATP, mediated by pannexin1 (Panx1) channels, activated the calcium-mobilizer P2Y purinergic receptors. Immunodetection revealed the presence of both Panx1 channels and P2Y1 receptors in ß-cells. Addition of an ectonucleotidase inhibitor or P2Y1 agonists to naïve ß-cells potentiated insulin secretion stimulated by intermediate glucose, mimicking the fructose treatment. Conversely, the P2Y1 antagonist and Panx1 inhibitor reversed the effects of fructose, as confirmed using Panx1-null islets and by the clearance of extracellular ATP by apyrase. These results reveal an important function of ATP signaling in pancreatic ß-cells mediating fructose-induced hyper-responsiveness.


Assuntos
Trifosfato de Adenosina/fisiologia , Frutose/farmacologia , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apirase/metabolismo , Conexinas/genética , Conexinas/metabolismo , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/efeitos dos fármacos , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Receptores Purinérgicos P2Y1/metabolismo
9.
Circ Res ; 121(11): 1224-1236, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28923792

RESUMO

RATIONALE: Autologous stem cell therapy using human c-Kit+ cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. OBJECTIVE: To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y2 nucleotide receptor (P2Y2R) activated by extracellular ATP and UTP molecules released following injury/stress. METHODS AND RESULTS: c-Kit+ hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y2R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y2R. Mechanistically, P2Y2R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. CONCLUSIONS: Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y2R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y2R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in patients with HF.


Assuntos
Células-Tronco Adultas/metabolismo , Proliferação de Células , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/farmacologia , Células-Tronco Adultas/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Via de Sinalização Hippo , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Receptores Purinérgicos P2Y2/genética , Regeneração , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Transfecção , Uridina Trifosfato/farmacologia , Proteínas de Sinalização YAP
10.
Bull Exp Biol Med ; 167(3): 363-366, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346880

RESUMO

We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 µM) and P2X receptor agonist α,ß-MeATP (100 µM) relaxed segments precontracted with phenylephrine (10 µM), while UTP (100-1000 µM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 µM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 µM). The constrictive effect of UTP was weakened by CORM II (100 µM), but was not changed by ZnPP IX (100 µM). ZnPP IX (100 µM) weakened the relaxation response to α,ß-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.


Assuntos
Aorta/fisiologia , Monóxido de Carbono/farmacologia , Endotélio/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Aorta/citologia , Células Cultivadas , Endotélio/citologia , Endotélio/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Compostos Organometálicos/farmacologia , Oxidiazóis/farmacologia , Fenilefrina/farmacologia , Protoporfirinas/farmacologia , Agonistas do Receptor Purinérgico P2X/farmacologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo
11.
Am J Physiol Cell Physiol ; 314(5): C627-C639, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365273

RESUMO

The objective of this study was to determine the molecular identity of ion channels involved in K+ secretion by the mammary epithelium and to examine their regulation by purinoceptor agonists. Apical membrane voltage-clamp experiments were performed on human mammary epithelial cells where the basolateral membrane was exposed to the pore-forming antibiotic amphotericin B dissolved in a solution with intracellular-like ionic composition. Addition of the Na+ channel inhibitor benzamil reduced the basal current, consistent with inhibition of Na+ uptake across the apical membrane, whereas the KCa3.1 channel blocker TRAM-34 produced an increase in current resulting from inhibition of basal K+ efflux. Treatment with two-pore potassium (K2P) channel blockers quinidine, bupivacaine and a selective TASK1/TASK3 inhibitor (PK-THPP) all produced concentration-dependent inhibition of apical K+ efflux. qRT-PCR experiments detected mRNA expression for nine K2P channel subtypes. Western blot analysis of biotinylated apical membranes and confocal immunocytochemistry revealed that at least five K2P subtypes (TWIK1, TREK1, TREK2, TASK1, and TASK3) are expressed in the apical membrane. Apical UTP also increased the current, but pretreatment with the PKC inhibitor GF109203X blocked the response. Similarly, direct activation of PKC with phorbol 12-myristate 13-acetate produced a similar increase in current as observed with UTP. These results support the conclusion that the basal level of K+ secretion involves constitutive activity of apical KCa3.1 channels and multiple K2P channel subtypes. Apical UTP evoked a transient increase in KCa3.1 channel activity, but over time caused persistent inhibition of K2P channel function leading to an overall decrease in K+ secretion.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Linhagem Celular Transformada , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Potenciais da Membrana , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Proteína Quinase C/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/efeitos dos fármacos , Via Secretória , Sódio/metabolismo , Uridina Trifosfato/farmacologia
12.
J Cell Physiol ; 233(3): 2526-2536, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28777435

RESUMO

Extracellular nucleotides can regulate cell proliferation in both normal and tumorigenic tissues. Here, we studied how extracellular nucleotides regulate the proliferation of ZL55 cells, a mesothelioma-derived cell line obtained from bioptic samples of asbestos-exposed patients. ADP and 2-MeS-ADP inhibited ZL55 cell proliferation, whereas ATP, UTP, and UDP were inactive. The nucleotide potency profile and the blockade of the ADP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 suggest that P2Y1 receptor controls ZL55 cell proliferation. The activation of P2Y1 receptor by ADP leads to activation of intracellular transduction pathways involving [Ca2+ ]i , PKC-δ/PKC-α, and MAPKs, ERK1/2 and JNK1/2. Cell treatment with ADP or 2-MeS-ADP also provokes the activation of p53, causing an accumulation of the G1 cyclin-dependent kinase inhibitors p21WAF1 and p27Kip . Inhibition of ZL55 cell proliferation by ADP was completely reversed by inhibiting MEK1/2, or JNK1/2, or PKC-δ, and PKC-α. Through the inhibition of ADP-activated transductional kinases it was found that PKC-δ was responsible for JNK1/2 activation. JNK1/2 has a role in transcriptional up-regulation of p53, p21WAF1/CIP1 , and p27kip1 . Conversely, the ADP-activated PKC-α provoked ERK1/2 phosphorylation. ERK1/2 increased p53 stabilization, required to G1 arrest of ZL55 cells. Concluding, the importance of the study is twofold: first, results shed light on the mechanism of cell cycle inhibition by ADP; second, results suggest that extracellular ADP may inhibit mesothelioma progression.


Assuntos
Difosfato de Adenosina/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mesotelioma/tratamento farmacológico , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Difosfato de Adenosina/análogos & derivados , Amianto/efeitos adversos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mesotelioma/enzimologia , Mesotelioma/genética , Mesotelioma/patologia , Fosforilação , Proteína Quinase C-alfa/genética , Proteína Quinase C-delta/genética , Estabilidade Proteica , Interferência de RNA , Receptores Purinérgicos P2Y1/metabolismo , Tionucleotídeos/farmacologia , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Purinergic Signal ; 14(3): 271-284, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30019187

RESUMO

Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 µM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 µM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.


Assuntos
Glaucoma , Pressão Intraocular/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2/efeitos dos fármacos , Animais , Humanos , Coelhos , Difosfato de Uridina/química , Difosfato de Uridina/farmacologia
14.
Arterioscler Thromb Vasc Biol ; 37(1): 75-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856454

RESUMO

OBJECTIVE: Nucleotide P2Y2 receptor (P2Y2R) contributes to vascular inflammation by increasing vascular cell adhesion molecule-1 expression in endothelial cells (EC), and global P2Y2R deficiency prevents fatty streak formation in apolipoprotein E null (ApoE-/-) mice. Because P2Y2R is ubiquitously expressed in vascular cells, we investigated the contribution of endothelial P2Y2R in the pathogenesis of atherosclerosis. APPROACH AND RESULTS: EC-specific P2Y2R-deficient mice were generated by breeding VEcadherin5-Cre mice with the P2Y2R floxed mice. Endothelial P2Y2R deficiency reduced endothelial nitric oxide synthase activity and significantly altered ATP- and UTP (uridine 5'-triphosphate)-induced vasorelaxation without affecting vasodilatory responses to acetylcholine. Telemetric blood pressure and echocardiography measurements indicated that EC-specific P2Y2R-deficient mice did not develop hypertension. We investigated the role of endothelial P2Y2R in the development of atherosclerotic lesions by crossing the EC-specific P2Y2R knockout mice onto an ApoE-/- background and evaluated lesion development after feeding a standard chow diet for 25 weeks. Histopathologic examination demonstrated reduced atherosclerotic lesions in the aortic sinus and entire aorta, decreased macrophage infiltration, and increased smooth muscle cell and collagen content, leading to the formation of a subendothelial fibrous cap in EC-specific P2Y2R-deficient ApoE-/- mice. Expression and proteolytic activity of matrix metalloproteinase-2 was significantly reduced in atherosclerotic lesions from EC-specific P2Y2R-deficient ApoE-/- mice. Furthermore, EC-specific P2Y2R deficiency inhibited nitric oxide production, leading to significant increase in smooth muscle cell migration out of aortic explants. CONCLUSIONS: EC-specific P2Y2R deficiency reduces atherosclerotic burden and promotes plaque stability in ApoE-/- mice through impaired macrophage infiltration acting together with reduced matrix metalloproteinase-2 activity and increased smooth muscle cell migration.


Assuntos
Aorta Torácica/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Placa Aterosclerótica , Receptores Purinérgicos P2Y2/deficiência , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Movimento Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Fibrose , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/genética , Ruptura Espontânea , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
15.
J Physiol ; 595(14): 4631-4645, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28481415

RESUMO

KEY POINTS: Hydrocortisone (HC) is required for activation of large-conductance Ca2+ -activated K+ current (BK) by purinergic receptor agonists. HC reduces insertion of the stress-regulated exon (STREX) in the KCNMA1 gene, permitting protein kinase C (PKC)-dependent channel activation. Overlapping and unique purinergic signalling regions exist at the apical border of differentiated surface cells. BK channels localize in the cilia of surface cells. ABSTRACT: In the present study we investigated the role of hydrocortisone (HC) on uridine-5'-triphosphate (UTP)-stimulated ion transport in differentiated, pseudostratified epithelia derived from normal human bronchial basal cells. The presence of a UTP-stimulated, paxilline-sensitive large-conductance Ca2+ -activated K+ (BK) current was demonstrated in control epithelia but was not stimulated in epithelia differentiated in the absence of HC (HC0). Addition of the BK channel opener NS11021 directly activated channels in control epithelia; however, under HC0 conditions, activation only occurred when UTP was added after NS11021. The PKC inhibitors GF109203x and Gö6983 blocked BK activation by UTP in control epithelia, suggesting that PKC-mediated phosphorylation plays a permissive role in purinoceptor-stimulated BK activation. Moreover, HC0 epithelia expressed significantly more KCNMA1 containing the stress-regulated exon (STREX), a splice-variant of the α-subunit that displays altered channel regulation by phosphorylation, compared to control epithelia. Furthermore, BK channels as well as purinergic receptors were shown to localize in unique and overlapping domains at the apical membrane of ciliated surface cells. These results establish a previously unrecognized role for glucocorticoids in regulation of BK channels in airway epithelial cells.


Assuntos
Brônquios/fisiologia , Células Epiteliais/efeitos dos fármacos , Hidrocortisona/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Mucosa Respiratória/fisiologia , Trifosfato de Adenosina/farmacologia , Diferenciação Celular , Linhagem Celular , Células Epiteliais/fisiologia , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Proteína Quinase C/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Purinérgicos P2Y/fisiologia , Mucosa Respiratória/citologia , Uridina Trifosfato/farmacologia
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 43-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768902

RESUMO

The Ubiquitin-Proteasome System (UPS) is essential for the regulation of the cellular proteostasis. Indeed, it has been postulated that an UPS dysregulation is the common mechanism that underlies several neurological disorders. Considering that extracellular nucleotides, through their selective P2Y2 receptor (P2Y2R), play a neuroprotective role in various neurological disorders that course with an UPS impairment, we wonder if this neuroprotective capacity resulted from their ability to modulate the UPS. Using a cellular model expressing two different UPS reporters, we found that the stimulation of P2Y2R by its selective agonist Up4U induced a significant reduction of UPS reporter levels. This reduction was due to an increase in two of the three peptidase proteasome activities, chymotrypsin and postglutamyl, caused by an increased expression of proteasome constitutive catalytic subunits ß1 and ß5. The intracellular signaling pathway involved required the activation of IP3/MEK1/2/ERK but was independent of PKC or PKA. Interestingly, the P2Y2R activation was able to revert both UPS-reporter accumulation and the cell death induced by a prolonged inhibition of UPS. Finally, we also observed that intracerebroventricular administration of Up4U induced a significant increase both of chymotrypsin and postglutamyl activities as well as an increased expression of proteasome subunits ß1 and ß5 in the hippocampus of wild-type mice, but not in P2Y2R KO mice. All these results strongly suggest that the capacity to modulate the UPS activity via P2Y2R is the molecular mechanism which is how the nucleotides play a neuroprotective role in neurological disorders.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nucleotídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Nucleotídeos/metabolismo , Agonistas do Receptor Purinérgico P2Y/metabolismo , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia
17.
Nitric Oxide ; 70: 68-75, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919322

RESUMO

BACKGROUND: Blockage of a coronary artery, usually caused by arteriosclerosis, can lead to life threatening acute myocardial infarction. Opening with PCI (percutaneous coronary intervention), may be lifesaving, but reperfusion might exacerbate the cellular damage, and changes in the endothelium are believed to be involved in this worsened outcome. AIM: The aim of the present study was to compare endothelial dependent and independent vasodilatory effect after experimental myocardial ischemia/reperfusion (I/R). METHODS: A well-established rat model of myocardial ischemia with 24 h of reperfusion was applied, followed by a study in a wire myograph. RESULTS: Endothelial NO dependent relaxation in response to carbachol, was sensitive to arterial depolarization, and was unaffected by I/R. In contrast, endothelial NO dependent ADPßS signalling, which was not sensitive to arterial depolarization, was significantly reduced after I/R. Following I/R, an H2O2 dependent EDH induced dilation appears in response to both of the above agonists. In addition, calcitonin gene-related peptide (CGRP) induced vasodilation was reduced. CONCLUSION: These data show that NO dependent ADPßS induced dilation is reduced after I/R. However, there is some compensation by released H2O2 causing an EDH. Combined with a loss of maximal dilation in response to CGRP, the reduced vasodilation could be an important factor in understanding the exacerbated damage after I/R.


Assuntos
Coração/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Vasodilatação/fisiologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carbacol/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Agonistas do Receptor Purinérgico P2Y/farmacologia , Ratos Sprague-Dawley , Tionucleotídeos/farmacologia , Vasodilatação/efeitos dos fármacos
18.
J Chem Inf Model ; 57(12): 3104-3123, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29182323

RESUMO

We performed a molecular modeling analysis of 100 nucleotide-like bisphosphates and 46 non-nucleotide arylurea derivatives previously reported as P2Y1R binders using the recently solved hP2Y1R structures. We initially docked the compounds at the X-ray structures and identified the binding modes of representative compounds highlighting key patterns in the structure-activity relationship (SAR). We subsequently subjected receptor complexes with selected key agonists (2MeSADP and MRS2268) and antagonists (MRS2500 and BPTU) to membrane molecular dynamics (MD) simulations (at least 200 ns run in triplicate, simulation time 0.6-1.6 µs per ligand system) while considering alternative protonation states of nucleotides. Comparing the temporal evolution of the ligand-protein interaction patterns with available site-directed mutagenesis (SDM) data and P2Y1R apo state simulation provided further SAR insights and suggested reasonable explanations for loss/gain of binding affinity as well as the most relevant charged species for nucleotide ligands. The MD analysis also predicted local conformational changes required for the receptor inactive state to accommodate nucleotide agonists.


Assuntos
Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Descoberta de Drogas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Agonistas do Receptor Purinérgico P2Y/química , Antagonistas do Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y1/química , Relação Estrutura-Atividade
19.
Proc Natl Acad Sci U S A ; 111(44): 15821-6, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25341729

RESUMO

Enteric purinergic motor neurotransmission, acting through P2Y1 receptors (P2Y1R), mediates inhibitory neural control of the intestines. Recent studies have shown that NAD(+) and ADP ribose better meet criteria for enteric inhibitory neurotransmitters in colon than ATP or ADP. Here we report that human and murine colon muscles also release uridine adenosine tetraphosphate (Up4A) spontaneously and upon stimulation of enteric neurons. Release of Up4A was reduced by tetrodotoxin, suggesting that at least a portion of Up4A is of neural origin. Up4A caused relaxation (human and murine colons) and hyperpolarization (murine colon) that was blocked by the P2Y1R antagonist, MRS 2500, and by apamin, an inhibitor of Ca(2+)-activated small-conductance K(+) (SK) channels. Up4A responses were greatly reduced or absent in colons of P2ry1(-/-) mice. Up4A induced P2Y1R-SK-channel-mediated hyperpolarization in isolated PDGFRα(+) cells, which are postjunctional targets for purinergic neurotransmission. Up4A caused MRS 2500-sensitive Ca(2+) transients in human 1321N1 astrocytoma cells expressing human P2Y1R. Up4A was more potent than ATP, ADP, NAD(+), or ADP ribose in colonic muscles. In murine distal colon Up4A elicited transient P2Y1R-mediated relaxation followed by a suramin-sensitive contraction. HPLC analysis of Up4A degradation suggests that exogenous Up4A first forms UMP and ATP in the human colon and UDP and ADP in the murine colon. Adenosine then is generated by extracellular catabolism of ATP and ADP. However, the relaxation and hyperpolarization responses to Up4A are not mediated by its metabolites. This study shows that Up4A is a potent native agonist for P2Y1R and SK-channel activation in human and mouse colon.


Assuntos
Colo/metabolismo , Fosfatos de Dinucleosídeos/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Antineoplásicos/farmacologia , Colo/inervação , Nucleotídeos de Desoxiadenina/farmacologia , Humanos , Camundongos , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Receptores Purinérgicos P2Y1/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Suramina/farmacologia , Difosfato de Uridina/farmacologia
20.
Am J Physiol Heart Circ Physiol ; 311(1): H299-309, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27233766

RESUMO

Uridine adenosine tetraphosphate (Up4A), a dinucleotide, exerts vascular influence via purinergic receptors (PR). We investigated the effects of Up4A on angiogenesis and the putative PR involved. Tubule formation assay was performed in a three-dimensional system, in which human endothelial cells were cocultured with pericytes with various Up4A concentrations for 5 days. Expression of PR subtypes and angiogenic factors was assessed in human endothelial cells with and without P2Y6R antagonist. No difference in initial tubule formation was detected between Up4A stimulation and control conditions at day 2 In contrast, a significant increase in vascular density in response to Up4A was observed at day 5 Up4A at an optimal concentration of 5 µM promoted total tubule length, number of tubules, and number of junctions, all of which were inhibited by the P2Y6R antagonist MRS2578. Higher concentrations of Up4A (10 µM) had no effects on angiogenesis parameters. Up4A increased mRNA level of P2YRs (P2Y2R, P2Y4R, and P2Y6R) but not P2XR (P2X4R and P2X7R) or P1R (A2AR and A2BR), while Up4A upregulated VEGFA and ANGPT1, but not VEGFR2, ANGPT2, Tie1, and Tie2. In addition, Up4A increased VEGFA protein levels. Transcriptional upregulation of P2YRs by Up4A was inhibited by MRS2578. In conclusion, Up4A is functionally capable of promoting tubule formation in an in vitro coculture system, which is likely mediated by pyrimidine-favored P2YRs but not P2XRs or P1Rs, and involves upregulation of angiogenic factors.


Assuntos
Indutores da Angiogênese/farmacologia , Fosfatos de Dinucleosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/efeitos dos fármacos , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Pericitos/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA