Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
1.
Cell ; 187(11): 2687-2689, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788691

RESUMO

In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.


Assuntos
Akkermansia , Ácidos e Sais Biliares , Publicações Periódicas como Assunto , Animais , Humanos , Camundongos , Akkermansia/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/microbiologia , Verrucomicrobia/metabolismo
2.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
3.
Cell ; 187(13): 3373-3389.e16, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906102

RESUMO

The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Imunoterapia , Neoplasias Pulmonares , Neoplasias , Feminino , Humanos , Masculino , Akkermansia , Carcinoma Pulmonar de Células não Pequenas/microbiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/tratamento farmacológico , Metagenômica/métodos , Neoplasias/microbiologia , Resultado do Tratamento
4.
Cell ; 184(21): 5338-5356.e21, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34624222

RESUMO

The tumor microenvironment (TME) influences cancer progression and therapy response. Therefore, understanding what regulates the TME immune compartment is vital. Here we show that microbiota signals program mononuclear phagocytes in the TME toward immunostimulatory monocytes and dendritic cells (DCs). Single-cell RNA sequencing revealed that absence of microbiota skews the TME toward pro-tumorigenic macrophages. Mechanistically, we show that microbiota-derived stimulator of interferon genes (STING) agonists induce type I interferon (IFN-I) production by intratumoral monocytes to regulate macrophage polarization and natural killer (NK) cell-DC crosstalk. Microbiota modulation with a high-fiber diet triggered the intratumoral IFN-I-NK cell-DC axis and improved the efficacy of immune checkpoint blockade (ICB). We validated our findings in individuals with melanoma treated with ICB and showed that the predicted intratumoral IFN-I and immune compositional differences between responder and non-responder individuals can be transferred by fecal microbiota transplantation. Our study uncovers a mechanistic link between the microbiota and the innate TME that can be harnessed to improve cancer therapies.


Assuntos
Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Microbiota , Monócitos/metabolismo , Microambiente Tumoral , Akkermansia/efeitos dos fármacos , Akkermansia/fisiologia , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fibras na Dieta/farmacologia , Fosfatos de Dinucleosídeos/administração & dosagem , Fosfatos de Dinucleosídeos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunomodulação/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
5.
Nature ; 608(7921): 168-173, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896748

RESUMO

Multiple studies have established associations between human gut bacteria and host physiology, but determining the molecular mechanisms underlying these associations has been challenging1-3. Akkermansia muciniphila has been robustly associated with positive systemic effects on host metabolism, favourable outcomes to checkpoint blockade in cancer immunotherapy and homeostatic immunity4-7. Here we report the identification of a lipid from A. muciniphila's cell membrane that recapitulates the immunomodulatory activity of A. muciniphila in cell-based assays8. The isolated immunogen, a diacyl phosphatidylethanolamine with two branched chains (a15:0-i15:0 PE), was characterized through both spectroscopic analysis and chemical synthesis. The immunogenic activity of a15:0-i15:0 PE has a highly restricted structure-activity relationship, and its immune signalling requires an unexpected toll-like receptor TLR2-TLR1 heterodimer9,10. Certain features of the phospholipid's activity are worth noting: it is significantly less potent than known natural and synthetic TLR2 agonists; it preferentially induces some inflammatory cytokines but not others; and, at low doses (1% of EC50) it resets activation thresholds and responses for immune signalling. Identifying both the molecule and an equipotent synthetic analogue, its non-canonical TLR2-TLR1 signalling pathway, its immunomodulatory selectivity and its low-dose immunoregulatory effects provide a molecular mechanism for a model of A. muciniphila's ability to set immunological tone and its varied roles in health and disease.


Assuntos
Akkermansia , Homeostase , Imunidade , Fosfatidiletanolaminas , Akkermansia/química , Akkermansia/citologia , Akkermansia/imunologia , Membrana Celular/química , Membrana Celular/imunologia , Citocinas/imunologia , Homeostase/imunologia , Humanos , Mediadores da Inflamação/síntese química , Mediadores da Inflamação/química , Mediadores da Inflamação/imunologia , Fosfatidiletanolaminas/síntese química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/imunologia , Relação Estrutura-Atividade , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/imunologia
6.
Mol Syst Biol ; 20(6): 596-625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745106

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.


Assuntos
Akkermansia , Citrobacter rodentium , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Humanos , Suscetibilidade a Doenças , Fibras na Dieta/metabolismo , Vida Livre de Germes , Dieta , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verrucomicrobia/genética , Infecções por Enterobacteriaceae/microbiologia , Colo/microbiologia , Camundongos Endogâmicos C57BL
7.
Trends Immunol ; 43(5): 337-339, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397955

RESUMO

Gut microbes can shape cancer immunotherapy responses; however, specific taxa have not been tested prospectively as biomarkers. Derosa and colleagues now demonstrate that the presence of Akkermansia muciniphila in baseline stool samples can be associated with improved outcomes and enhanced antitumor immune cell infiltrates in patients with lung cancer treated with immune checkpoint blockade (ICB).


Assuntos
Akkermansia , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos , Imunoterapia
8.
FASEB J ; 38(8): e23603, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648368

RESUMO

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.


Assuntos
Analgésicos Opioides , Disbiose , Fentanila , Microbioma Gastrointestinal , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Morfina , Animais , Morfina/farmacologia , Camundongos , Disbiose/induzido quimicamente , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Masculino , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Transplante de Microbiota Fecal , Proteínas Associadas a Pancreatite/metabolismo , Akkermansia/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Bacteroidetes/efeitos dos fármacos
9.
Nature ; 572(7770): 474-480, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31330533

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.


Assuntos
Esclerose Lateral Amiotrófica/microbiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Niacinamida/metabolismo , Akkermansia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Disbiose , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , Niacinamida/biossíntese , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Taxa de Sobrevida , Simbiose/efeitos dos fármacos , Verrucomicrobia/metabolismo , Verrucomicrobia/fisiologia
10.
J Bacteriol ; 206(2): e0033423, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299857

RESUMO

Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.


Assuntos
Akkermansia , Trissacarídeos , alfa-L-Fucosidase , Lactente , Humanos , Akkermansia/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Filogenia , Oligossacarídeos/metabolismo , beta-Galactosidase/genética
11.
J Cell Mol Med ; 28(1): e18026, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961985

RESUMO

In the previous study, we found that the oral sodium valproate (SVP) increased the relative abundance of Akkermansia muciniphila (A. muciniphila) in rats, and plasma aspartate transaminase (AST) and alanine aminotransferase (ALT) activities were positively correlated with A. muciniphila levels. This study aimed to further investigate the role of A. muciniphila in SVP-induced hepatotoxicity by orally supplementing rats with the representative strain of A. muciniphila, A. muciniphila MucT. Additionally, the fresh faeces were incubated anaerobically with SVP to investigate the effect of SVP on faecal A. muciniphila in the absence of host influence. Results showed that A. muciniphila MucT ameliorated the hepatotoxicity and upregulation of A. muciniphila induced by SVP. SVP also induced a noteworthy elevation of A. muciniphila level in vitro, supporting the observation in vivo. Therefore, we speculate that A. muciniphila MucT may be a potential therapeutic strategy for SVP-induced hepatotoxicity. In addition, the increased A. muciniphila induced by SVP may differ from A. muciniphila MucT, but further evidence is needed. These findings provide new insights into the relationships between A. muciniphila and SVP-induced hepatotoxicity, highlighting the potential for different A. muciniphila strains to have distinct or even opposing effects on SVP-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácido Valproico , Ratos , Animais , Regulação para Cima , Verrucomicrobia/fisiologia , Akkermansia
12.
Gastroenterology ; 164(1): 103-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240952

RESUMO

BACKGROUND & AIMS: Weight loss and exercise intervention have been reported to increase the interaction between Bacteroides spp and Akkermansiamuciniphila (Am), although the underlying mechanisms and consequences of the interaction remain unknown. METHODS: Using a healthy Korean twin cohort (n = 582), we analyzed taxonomic associations with host body mass index. B vulgatus strains were isolated from mice and human subjects to investigate the strain-specific effect of B vulgatus SNUG 40005 (Bvul) on obesity. The mechanisms underlying Am enrichment by Bvul administration were investigated by multiple experiments: (1) in vitro cross-feeding experiments, (2) construction of Bvul mutants with the N-acetylglucosaminidase gene knocked out, and (3) in vivo validation cohorts with different metabolites. Finally, metabolite profiling in mouse and human fecal samples was performed. RESULTS: An interaction between Bvul and Am was observed in lean subjects but was disrupted in obese subjects. The administration of Bvul to mice fed a high-fat diet decreased body weight, insulin resistance, and gut permeability. In particular, Bvul restored the abundance of Am, which decreased significantly after a long-term high-fat diet. A cross-feeding analysis of Am with cecal contents or Bvul revealed that Am enrichment was attributed to metabolites produced during mucus degradation by Bvul. The metabolome profile of mouse fecal samples identified N-acetylglucosamine as contributing to Am enrichment, which was confirmed by in vitro and in vivo experiments. Metabolite network analysis of the twin cohort found that lysine serves as a bridge between N-acetylglucosamine, Bvul, and Am. CONCLUSIONS: Strain-specific microbe-microbe interactions modulate the mucosal environment via metabolites produced during mucin degradation in the gut.


Assuntos
Acetilglucosamina , Akkermansia , Humanos , Camundongos , Animais , Bacteroides/genética , Obesidade/metabolismo , Dieta Hiperlipídica
13.
J Gene Med ; 26(1): e3639, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38058259

RESUMO

PD-1 monoclonal antibodies (mAb) have demonstrated remarkable efficacy in a variety of cancers, including Hepatocellular carcinoma (HCC). However, the patient response rates remain suboptimal, and a significant proportion of initial responders may develop resistance to this therapeutic approach. Akkermansia muciniphila (AKK), a microorganism implicated in multiple human diseases, has been reported to be more abundant in patients who exhibit favorable responses to PD-1mAb. However, the underlying mechanism has yet to be elucidated. In our study, we found that AKK could enhance the efficacy of PD-1mAb against HCC in a tumor-bearing mouse model. It promotes HCC tumor cells apoptosis and raise the CD8+ T proportion in the tumor microenvironment. Additionally, AKK downregulates PD-L1 expression in tumor cells. Furthermore, the analysis of metabonomics demonstrates that AKK induces alterations in the host's bile acid metabolism, leading to a significant increase in serum TUDCA levels. Considering the immunosuppresive roles of TUDCA in HCC development, it is plausible to speculate that AKK may reinforce the immunotherapy of PD-1mAb against HCC through its impact on bile acid metabolism.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Ácido Tauroquenodesoxicólico/uso terapêutico , Microambiente Tumoral , Akkermansia
14.
Biochem Biophys Res Commun ; 722: 150165, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805786

RESUMO

Akkermansia muciniphila is a mucin-degrading probiotic that colonizes the gastrointestinal tract. Genomic analysis identified a set of genes involved in the biosynthesis of corrin ring, including the cobalt factor II methyltransferase CbiL, in some phylogroups of A. muciniphila, implying a potential capacity for de novo synthesis of cobalamin. In this work, we determined the crystal structure of CbiL from A. muciniphila at 2.3 Å resolution. AmCbiL exists as a dimer both in solution and in crystal, and each protomer consists of two α/ß domains, the N-terminal domain and the C-terminal domain, consistent with the folding of typical class III MTases. The two domains create an open trough, potentially available to bind the substrates SAM and cobalt factor II. Sequence and structural comparisons with other CbiLs, assisted by computer modeling, suggest that AmCbiL should have cobalt factor II C-20 methyltransferase activity. Our results support that certain strains of A. muciniphila may be capable of synthesizing cobalamin de novo.


Assuntos
Akkermansia , Metiltransferases , Modelos Moleculares , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/genética , Akkermansia/enzimologia , Cristalografia por Raios X , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Vitamina B 12/metabolismo , Vitamina B 12/química , Conformação Proteica
15.
Small ; 20(20): e2308680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225709

RESUMO

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Exossomos , Alho , Microbioma Gastrointestinal , Nanopartículas , Diabetes Mellitus Tipo 2/metabolismo , Alho/química , Animais , Nanopartículas/química , Exossomos/metabolismo , Camundongos , Akkermansia , Humanos , Masculino , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia
16.
Appl Environ Microbiol ; 90(1): e0112123, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38088552

RESUMO

Gut bacteria hold the potential to produce a broad range of metabolites that can modulate human functions, including molecules with neuroactive potential. One such molecule is γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter of the central nervous system in animals. Metagenomic analyses suggest that the genomes of many gut bacteria encode glutamate decarboxylase (GAD), the enzyme that catalyzes GABA production. The genome of Akkermansia muciniphila, a mucin specialist and potential next-generation probiotic from the human gut, is predicted to encode GAD, suggesting a contributing role in GABA production in the human gut. In this study, A. muciniphila was grown in batch cultures with and without pH control. In both experiments, A. muciniphila was found to produce GABA as a response to acid (pH <5.5), although only when GABA precursors, either glutamate or glutamine, were present in the medium. Proteomic analysis comparing A. muciniphila grown with and without precursors at pH 4 did not show a difference in GAD expression, suggesting that it is expressed regardless of the presence of GABA precursors. To further investigate the function of A. muciniphila GAD, we heterologously expressed the gad gene (encoded by locus tag Amuc_0372) with a His tag in Escherichia coli and purified the GAD protein. Enzyme assays showed GAD activity in a pH range between 4 and 6, with the highest specific activity at pH 5 of 144 ± 16 µM GABA/min/mg. Overall, our results demonstrate the ability of A. muciniphila to produce GABA as an acid response and unravel the conditions under which GABA production in A. muciniphila occurs.IMPORTANCEAkkermansia muciniphila is considered to be a beneficial bacterium from the human gut, but the exact mechanisms by which A. muciniphila influences its host are not yet fully understood. To this end, it is important to identify which metabolites are produced and consumed by A. muciniphila that may contribute to a healthy gut. In the present study, we demonstrate the ability of A. muciniphila to produce γ-aminobutyric acid (GABA) when grown in an acidic environment, which often occurs in the gut. GABA is the major inhibitory neurotransmitter in the central nervous system and is present in the human gut. For this reason, it is considered an important bacterial metabolite. Our finding that A. muciniphila produces GABA in acidic environments adds to the growing body of understanding of its relationship with host health and provides an explanation on how it can survive acid stress in the human gut.


Assuntos
Proteômica , Verrucomicrobia , Animais , Humanos , Verrucomicrobia/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Akkermansia
17.
BMC Microbiol ; 24(1): 119, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580930

RESUMO

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.


Assuntos
Clostridiales , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Obesidade/microbiologia , Bactérias/genética , Fezes/microbiologia , Akkermansia
18.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833010

RESUMO

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Assuntos
Akkermansia , Faecalibacterium , Hepcidinas , Macrófagos , Humanos , Células CACO-2 , Microbioma Gastrointestinal , Células Hep G2 , Hepcidinas/genética , Hepcidinas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ferro/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Células THP-1
19.
Pharmacol Res ; 206: 107278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908613

RESUMO

Accumulating evidence has proved the close association between alterations in gut microbiota and resistance to chemotherapeutic drugs. However, the potential roles of gut microbiota in regulating oxaliplatin sensitivity in gastric cancer (GC) have not been investigated before. We first found that antibiotic treatment diminished the therapeutic efficacy of oxaliplatin in a GC mouse model. Importantly, this effect could be transmitted to germ-free mice via fecal microbiota transplantation, indicating a potential role of gut microbiota modulation in oxaliplatin efficacy. Further, metagenomics data showed that Akkermansia muciniphila (A. muciniphila) ranked first among the bacterial species with decreased relative abundances after antibiotic treatment. Metabolically active A. muciniphila promotes oxaliplatin efficacy. As shown by metabolomics analysis, the metabolic pattern of gut microbiota was disrupted with significantly downregulated levels of pentadecanoic acid (PEA), and the use of PEA significantly promoted oxaliplatin efficacy. Mechanistically, FUBP1 positively regulated aerobic glycolysis of GC cells to hinder the therapeutic efficacy of oxaliplatin. A. muciniphila-derived PEA functioned as an inhibitory factor of glycolysis by directly antagonizing the activity of FUBP1, which potentiated GC responses to oxaliplatin. Our research suggested a key role for intestinal A. muciniphila and its metabolite PEA in promoting oxaliplatin efficacy, thus providing a new perspective for probiotic and prebiotic intervention in GC patients during chemotherapy.


Assuntos
Akkermansia , Antineoplásicos , Microbioma Gastrointestinal , Glicólise , Oxaliplatina , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Animais , Akkermansia/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glicólise/efeitos dos fármacos , Camundongos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
20.
Int Microbiol ; 27(2): 393-409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37479958

RESUMO

Clostridioides difficile infection (CDI) is the leading cause of healthcare-acquired infections worldwide. Probiotics are widely recommended to prevent CDI and its recurrences. Akkermansia muciniphila, as a therapeutic symbiont colonizing the intestinal mucosal layer, is considered to be a promising next-generation probiotic. In this work, we assessed the inhibitory effects of A. muciniphila MucT and its derivatives on cytotoxicity and inflammatory response induced by C. difficile RT001 in Caco-2 cells. The results obtained from SEM revealed that the morphology of UV-killed A. muciniphila remained unchanged after UV inactivation. TEM analysis showed that A. muciniphila-isolated extracellular vesicles (EVs) were spherical and ranged from 50 to 200 nm in size. Toxigenic supernatant (Tox-S) of C. difficile RT001 (500 µg/ml) significantly (P <0.01) reduced the cell viability of Caco-2 cells. Caco-2 cells treated with live (MOI 10), UV-killed (MOI 10), cell-free supernatant (CFS, 106 cfu/ml), and EVs (20 µg/ml) of A. muciniphila exhibited over 90% viability in comparison to untreated control. The neutralized CFS preparation using A. muciniphila and its derivatives could notably reduce the expression level of inflammatory markers. Additionally, A. muciniphila and its derivatives modulated the production of IL-1ß, TNF-α, and IL-10 in Tox-S stimulated Caco-2 cells. We demonstrated that A. muciniphila and its derivatives can modulate changes in the gut barrier-related genes and inflammatory response caused by C. difficile Tox-S in Caco-2 cells.


Assuntos
Clostridioides difficile , Ácidos Linoleicos , Humanos , Células CACO-2 , Akkermansia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA