Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
J Biol Chem ; 288(16): 11304-11, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23479729

RESUMO

A low potential electron carrier ferredoxin (E0' ≈ -500 mV) is used to fuel the only bioenergetic coupling site, a sodium-motive ferredoxin:NAD(+) oxidoreductase (Rnf) in the acetogenic bacterium Acetobacterium woodii. Because ferredoxin reduction with physiological electron donors is highly endergonic, it must be coupled to an exergonic reaction. One candidate is NADH-dependent caffeyl-CoA reduction. We have purified a complex from A. woodii that contains a caffeyl-CoA reductase and an electron transfer flavoprotein. The enzyme contains three subunits encoded by the carCDE genes and is predicted to have, in addition to FAD, two [4Fe-4S] clusters as cofactor, which is consistent with the experimental determination of 4 mol of FAD, 9 mol of iron, and 9 mol of acid-labile sulfur. The enzyme complex catalyzed caffeyl-CoA-dependent oxidation of reduced methyl viologen. With NADH as donor, it catalyzed caffeyl-CoA reduction, but this reaction was highly stimulated by the addition of ferredoxin. Spectroscopic analyses revealed that ferredoxin and caffeyl-CoA were reduced simultaneously, and a stoichiometry of 1.3:1 was determined. Apparently, the caffeyl-CoA reductase-Etf complex of A. woodii uses the novel mechanism of flavin-dependent electron bifurcation to drive the endergonic ferredoxin reduction with NADH as reductant by coupling it to the exergonic NADH-dependent reduction of caffeyl-CoA.


Assuntos
Acetobacterium/enzimologia , Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Flavoproteínas/química , Subunidades Proteicas/química , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Catálise , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/isolamento & purificação , Flavoproteínas/metabolismo , Ferro/química , Ferro/metabolismo , Oxirredução , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo
2.
BMC Evol Biol ; 14: 86, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24758716

RESUMO

BACKGROUND: Reactive carbonyl species (RCS), such as methylglyoxal (MG) and glyoxal (GO), are synthesized as toxic metabolites in living systems. Mechanisms of RCS detoxification include the glutathione (GSH)-dependent system consisting of glyoxalase I (GLO1) and glyoxalase II (GLO2), and GSH-independent system involving glyoxalase III (GLO3). Hsp31 and DJ-1 proteins are weakly homologous to each other and belong to two different subfamilies of the DJ-1/Hsp31/PfpI superfamily. Recently, the Escherichia coli Hsp31 protein and the DJ-1 proteins from Arabidopsis thaliana and metazoans have been demonstrated to have GLO3 activity. RESULTS: We performed a systematic survey of homologs of DJ-1 and Hsp31 in fungi. We found that DJ-1 proteins have a very limited distribution in fungi, whereas Hsp31 proteins are widely distributed among different fungal groups. Phylogenetic analysis revealed that fungal and metazoan DJ-1 proteins and bacterial YajL proteins are most closely related and together form a sister clade to bacterial and fungal Hsp31 proteins. We showed that two Schizosaccharomyces pombe Hsp31 proteins (Hsp3101 and Hsp3102) and one Saccharomyces cerevisiae Hsp31 protein (ScHsp31) displayed significantly higher in vitro GLO3 activity than S. pombe DJ-1 (SpDJ-1). Overexpression of hsp3101, hsp3102 and ScHSP31 could confer MG and GO resistance on either wild-type S. pombe cells or GLO1 deletion of S. pombe. S. pombe DJ-1 and Hsp31 proteins exhibit different patterns of subcellular localization. CONCLUSIONS: Our results suggest that fungal Hsp31 proteins are the major GLO3 that may have some role in protecting cells from RCS toxicity in fungi. Our results also support the view that the GLO3 activity of Hsp31 proteins may have evolved independently from that of DJ-1 proteins.


Assuntos
Aldeído Oxirredutases/isolamento & purificação , Proteínas Fúngicas/análise , Schizosaccharomyces/enzimologia , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Fungos/enzimologia , Fungos/metabolismo , Chaperonas Moleculares/química , Dados de Sequência Molecular , Filogenia , Schizosaccharomyces/genética , Alinhamento de Sequência
3.
Biosci Biotechnol Biochem ; 78(4): 582-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036953

RESUMO

Carbon monoxide dehydrogenase-I (CODH-I) from the CO-utilizing bacterium Carboxydothermus hydrogenoformans are expected to be utilized as a part of reproducible carbon dioxide photoreduction system. However, the over-expression system for CODH-I remains to be constructed. CODH-I constitutes a hydrogenase/CODH gene cluster including a gene encoding a Ni-insertion accessory protein, CooC (cooC3). Through co-expression of CooC3, we found an over-expression system with higher activity. The Rec-CODH-I with the co-expression exhibits 8060 U/mg which was approximately threefold than that without co-expression (2270 U/mg). In addition, co-expression resulted in Ni(2+) content increase; the amount of Ni atoms of Rec-CODH-I was approximately thrice than that without co-expression.


Assuntos
Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Engenharia Genética/métodos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Expressão Gênica , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/isolamento & purificação , Níquel/análise , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
Protein Expr Purif ; 92(2): 208-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24125754

RESUMO

As a member of zinc-containing medium-chain alcohol dehydrogenase family, formaldehyde dehydrogenase (FDH) can oxidize toxic formaldehyde to less active formate with NAD(+) as a cofactor and exists in both prokaryotes and eukaryotes. Most FDHs are well known to be glutathione-dependent in the catalysis of formaldehyde oxidation, but the enzyme from Pseudomonas putida is an exception, which is independent of glutathione. To identify novel glutathione-independent FDHs from other bacterial strains and facilitate the corresponding structural and enzymatic studies, high-level soluble expression and efficient purification of these enzymes need to be achieved. Here, we present molecular cloning, expression, and purification of the FDH from Pseudomonas aeruginosa, which is a Gram-negative pathogenic bacterium causing opportunistic human infection. The FDH of P. aeruginosa shows high sequence identity (87.97%) with that of P. putida. Our results indicated that coexpression with molecular chaperones GroES, GroEL, and Tig has significantly attenuated inclusion body formation and improved the solubility of the recombinant FDH in Escherichiacoli cells. A purification protocol including three chromatographic steps was also established to isolate the recombinant FDH to homogeneity with a yield of ∼3.2 mg from 1L of cell culture. The recombinant P. aeruginosa FDH was properly folded and biologically functional, as demonstrated by the mass spectrometric, crystallographic, and enzymatic characterizations of the purified proteins.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
World J Microbiol Biotechnol ; 29(4): 683-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23225139

RESUMO

The gene encoding 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABaldehyde-DH) from Pseudomonas sp. 13CM, responsible for the conversion of 4-N-trimethylaminobutyraldehyde (TMABaldehyde) to γ-butyrobetaine in the carnitine biosynthesis pathway, isolated by shotgun cloning and expressed in Escherichia coli DH5α. The recombinant TMABaldehyde-DH was purified 19.5 fold to apparent homogeneity by hydrophobic and affinity chromatography and biochemically characterized. The enzyme was found to be a trimer with identical 52 kDa subunits. The isoelectric point was found to be 4.5. Optimum pH and temperature were found respectively as pH 9.5 and 40 °C. The Km values for TMABaldehyde, 4-dimethylaminobutyraldehyde, and NAD+ were respectively, 0.31, 0.62, and 1.16 mM. The molecular and catalytic properties differed from those of TMABaldehyde-DH I, which was discovered initially in Pseudomonas sp. 13CM. The new enzyme, designated TMABaldehyde-DH II, structural gene was inserted into an expression vector pET24b (+) and over-expressed in E. coli BL21 (DE3) under the control of a T7 promoter. The recombinant TMABaldehyde-DH from Pseudomonas sp. 13CM can now be obtained in large quantity necessary for further biochemical characterization and applications.


Assuntos
Aldeído Oxirredutases/metabolismo , Pseudomonas/enzimologia , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Betaína/análogos & derivados , Betaína/metabolismo , Carnitina/metabolismo , Cromatografia Líquida , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Cinética , Dados de Sequência Molecular , Peso Molecular , NAD/metabolismo , Multimerização Proteica , Pseudomonas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Temperatura
6.
Artigo em Inglês | MEDLINE | ID: mdl-22232182

RESUMO

Pseudomonas putida G7 is one of the most studied naphthalene-degrading species. The nah operon in P. putida, which is present on the 83 kb metabolic plasmid NAH7, codes for enzymes involved in the conversion of naphthalene to salicylate. The enzyme NahF (salicylaldehyde dehydrogenase) catalyzes the last reaction in this pathway. The nahF gene was subcloned into the pET28a(TEV) vector and the recombinant protein was overexpressed in Escherichia coli Arctic Express at 285 K. The soluble protein was purified by affinity chromatography followed by gel filtration. Crystals of recombinant NahF (6×His-NahF) were obtained at 291 K and diffracted to 2.42 Å resolution. They belonged to the hexagonal space group P6(4)22, with unit-cell parameters a = b = 169.47, c = 157.94 Å. The asymmetric unit contained a monomer and a crystallographic twofold axis generated the dimeric biological unit.


Assuntos
Aldeído Oxirredutases/química , Pseudomonas putida/enzimologia , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Cristalografia por Raios X , Expressão Gênica , Naftalenos/metabolismo
7.
Microbiology (Reading) ; 157(Pt 1): 209-219, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20847004

RESUMO

Transferrin (Tf) is a host glycoprotein capable of binding two ferric-iron ions to become holotransferrin (holoTf), which transports iron in to all cells. Entamoeba histolytica is a parasitic protozoan able to use holoTf as a sole iron source in vitro. The mechanism by which this parasite scavenges iron from holoTf is unknown. An E. histolytica holoTf-binding protein (EhTfbp) was purified by using an anti-human transferrin receptor (TfR) monoclonal antibody. EhTfbp was identified by MS/MS analysis and database searches as E. histolytica acetaldehyde/alcohol dehydrogenase-2 (EhADH2), an iron-dependent enzyme. Both EhTfbp and EhADH2 bound holoTf and were recognized by the anti-human TfR antibody, indicating that they correspond to the same protein. It was found that the amoebae internalized holoTf through clathrin-coated pits, suggesting that holoTf endocytosis could be important for the parasite during colonization and invasion of the intestinal mucosa and liver.


Assuntos
Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Clatrina/metabolismo , Endocitose , Entamoeba histolytica/metabolismo , Interações Hospedeiro-Patógeno , Transferrina/metabolismo , Álcool Desidrogenase/isolamento & purificação , Aldeído Oxirredutases/isolamento & purificação , Vesículas Revestidas por Clatrina/metabolismo , Humanos , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Espectrometria de Massas em Tandem
8.
Biosci Biotechnol Biochem ; 75(7): 1392-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21737917

RESUMO

We established an Na(2)S-free, large-scale overexpression system of deriving CODH II from thermophilic bacterium Carboxydothermus hydrogenoformans in Escherichia coli using a large-scale fermentor. Recombinant-CODH II showed a CO oxidation activity of 9,600 U/mg. In addition, recombinant-CODH II exhibited considerable CO(2) reduction activity, of 16.9 U/mg.


Assuntos
Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Proteínas Recombinantes/metabolismo , Bactérias/química , Dióxido de Carbono/metabolismo , Fermentação , Oxirredução
9.
Proc Natl Acad Sci U S A ; 105(36): 13497-502, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18757760

RESUMO

Evolution of new enzymatic activities is believed to require a period of gene sharing in which a single enzyme must serve both its original function and a new function that has become advantageous to the organism. Subsequent gene duplication allows one copy to maintain the original function, while the other diverges to optimize the new function. The physiological impact of gene sharing and the constraints imposed by the need to maintain the original activity during the early stages of evolution of a new activity have not been addressed experimentally. We report here an investigation of the evolution of a new activity under circumstances in which both the original and the new activity are critical for growth. Glutamylphosphate reductase (ProA) has a very low promiscuous activity with N-acetylglutamylphosphate, the normal substrate for ArgC (N-acetylglutamylphosphate reductase). A mutation that changes Glu-383 to Ala increases the promiscuous activity by 12-fold but decreases the original activity by 2,800-fold. The impairment in Pro and Arg synthesis results in 14-fold overexpression of E383A ProA, providing sufficient N-acetylglutamylphosphate reductase activity to allow a strain lacking ArgC to grow on glucose. Thus, reaching the threshold level of NAGP reductase activity required for survival required both a structural mutation and overexpression of the enzyme. Notably, overexpression does not require a mutation in the regulatory region of the protein; amino acid limitation attributable to the poor catalytic abilities of E383A ProA causes a physiological response that results in overexpression.


Assuntos
Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Evolução Molecular , Glutamato-5-Semialdeído Desidrogenase/genética , Glutamato-5-Semialdeído Desidrogenase/metabolismo , Viabilidade Microbiana , Aldeído Oxirredutases/isolamento & purificação , Catálise , Ativação Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Glucose/farmacologia , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Mutação/genética
10.
Int J Biol Macromol ; 171: 491-501, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428959

RESUMO

The genome of the hyperthermophilic and piezophilic euryarchaeaon Thermococcus barophilus Ch5 encodes three putative alcohol dehydrogenases (Tba ADHs). Herein, we characterized Tba ADH547 biochemically and probed its catalytic mechanism by mutational studies. Our data demonstrate that Tba ADH547 can oxidize ethanol and reduce acetaldehyde at high temperature with the same optimal temperature (75 °C) and exhibit similar thermostability for oxidization and reduction reactions. However, Tba ADH547 has different optimal pH for oxidation and reduction: 8.5 for oxidation and 7.0 for reduction. Tba ADH547 is dependent on a divalent ion for its oxidation activity, among which Mn2+ is optimal. However, Tba ADH547 displays about 20% reduction activity without a divalent ion, and the maximal activity with Fe2+. Furthermore, Tba ADH547 showcases a strong substrate preference for 1-butanol and 1-hexanol over ethanol and other alcohols. Similarly, Tba ADH547 prefers butylaldehyde to acetaldehyde as its reduction substrate. Mutational studies showed that the mutations of residues D195, H199, H262 and H274 to Ala result in the significant activity loss of Tba ADH547, suggesting that residues D195, H199, H262 and H274 are responsible for catalysis. Overall, Tba ADH547 is a thermoactive ADH with novel biochemical characteristics, thereby allowing this enzyme to be a potential biocatalyst.


Assuntos
Aldeído Oxirredutases/isolamento & purificação , Proteínas Arqueais/isolamento & purificação , Thermococcus/enzimologia , Álcoois/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Cátions/farmacologia , Dicroísmo Circular , Sequência Conservada , Genes Arqueais , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Filogenia , Desnaturação Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermococcales/enzimologia , Thermococcales/genética , Thermococcus/genética
11.
Appl Microbiol Biotechnol ; 86(3): 901-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19921179

RESUMO

There are at least three different pathways for the catabolism of D-galacturonate in microorganisms. In the oxidative pathway, which was described in some prokaryotic species, D-galacturonate is first oxidised to meso-galactarate (mucate) by a nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase (EC 1.1.1.203). In the following steps of the pathway mucate is converted to 2-keto-glutarate. The enzyme activities of this catabolic pathway have been described while the corresponding gene sequences are still unidentified. The D-galacturonate dehydrogenase was purified from Agrobacterium tumefaciens, and the mass of its tryptic peptides was determined using MALDI-TOF mass spectrometry. This enabled the identification of the corresponding gene udh. It codes for a protein with 267 amino acids having homology to the protein family of NAD(P)-binding Rossmann-fold proteins. The open reading frame was functionally expressed in Saccharomyces cerevisiae. The N-terminally tagged protein was not compromised in its activity and was used after purification for a kinetic characterization. The enzyme was specific for NAD and accepted D-galacturonic acid and D-glucuronic acid as substrates with similar affinities. NMR analysis showed that in water solution the substrate D-galacturonic acid is predominantly in pyranosic form which is converted by the enzyme to 1,4 lactone of galactaric acid. This lactone seems stable under intracellular conditions and does not spontaneously open to the linear meso-galactaric acid.


Assuntos
Agrobacterium tumefaciens/enzimologia , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Hexurônicos/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Expressão Gênica , Ácido Glucurônico/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Modelos Biológicos , Peso Molecular , NAD/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Açúcares Ácidos/metabolismo
12.
Biochemistry (Mosc) ; 75(5): 562-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20632934

RESUMO

The ability of Pseudomonas fluorescens 26K strain to utilize naphthalene at concentrations up to 600 mg/liter as the sole source of carbon and energy in mineral liquid media was shown. Using HPLC, TLC, and mass-spectrometry, the intermediates of naphthalene transformation by this strain were identified as naphthalene cis-1,2-dihydrodiol, salicylaldehyde, salicylate, catechol, 2-hydroxymuconic semialdehyde, and 1-naphthol. Catechol 2,3-dioxygenase (a homotetramer with native molecular mass 125 kDa) and NAD+-dependent homohexameric naphthalene cis-1,2-dihydrodiol dehydrogenase with native molecular mass 160 kDa were purified from crude extract of the strain and characterized. NAD+-dependent homodimeric salicylaldehyde dehydrogenase with molecular mass 110 kDa was purified and characterized for the first time. Based on the data, a pathway of naphthalene degradation by P. fluorescens 26K is suggested.


Assuntos
Aldeído Oxirredutases/química , Catecol 2,3-Dioxigenase/química , Naftalenos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Pseudomonas fluorescens/enzimologia , Aldeído Oxirredutases/isolamento & purificação , Aldeídos/análise , Catecol 2,3-Dioxigenase/isolamento & purificação , Catecóis/análise , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Ácidos Graxos Insaturados/análise , Espectrometria de Massas , Naftóis/análise , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Salicilatos/análise
13.
J Bacteriol ; 191(5): 1565-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19060141

RESUMO

Uronate dehydrogenase has been cloned from Pseudomonas syringae pv. tomato strain DC3000, Pseudomonas putida KT2440, and Agrobacterium tumefaciens strain C58. The genes were identified by using a novel complementation assay employing an Escherichia coli mutant incapable of consuming glucuronate as the sole carbon source but capable of growth on glucarate. A shotgun library of P. syringae was screened in the mutant E. coli by growing transformed cells on minimal medium containing glucuronic acid. Colonies that survived were evaluated for uronate dehydrogenase, which is capable of converting glucuronic acid to glucaric acid. In this manner, a 0.8-kb open reading frame was identified and subsequently verified to be udh. Homologous enzymes in P. putida and A. tumefaciens were identified based on a similarity search of the sequenced genomes. Recombinant proteins from each of the three organisms expressed in E. coli were purified and characterized. For all three enzymes, the turnover number (k(cat)) with glucuronate as a substrate was higher than that with galacturonate; however, the Michaelis constant (K(m)) for galacturonate was lower than that for glucuronate. The A. tumefaciens enzyme was found to have the highest rate constant (k(cat) = 1.9 x 10(2) s(-1) on glucuronate), which was more than twofold higher than those of both of the pseudomonad enzymes.


Assuntos
Agrobacterium tumefaciens/enzimologia , Aldeído Oxirredutases , Clonagem Molecular , Pseudomonas putida/enzimologia , Pseudomonas syringae/enzimologia , Proteínas Recombinantes/metabolismo , Agrobacterium tumefaciens/genética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Meios de Cultura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ácido Glucárico/metabolismo , Ácido Glucurônico/metabolismo , Cinética , Dados de Sequência Molecular , Mutação , Pseudomonas putida/genética , Pseudomonas syringae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA
14.
Appl Environ Microbiol ; 75(9): 2758-64, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270127

RESUMO

Wax esters, ester-linked fatty acids and long-chain alcohols, are important energy storage compounds in select bacteria. The synthesis of wax esters from fatty acids is proposed to require the action of a four-enzyme pathway. An essential step in the pathway is the reduction of a fatty aldehyde to the corresponding fatty alcohol, although the enzyme responsible for catalyzing this reaction has yet to be identified in bacteria. We report here the purification and characterization of an enzyme from the wax ester-accumulating bacterium Marinobacter aquaeolei VT8, which is a proposed fatty aldehyde reductase in this pathway. The enzyme, a 57-kDa monomer, was expressed in Escherichia coli as a fusion protein with the maltose binding protein on the N terminus and was purified to near homogeneity by using amylose affinity chromatography. The purified enzyme was found to reduce a number of long-chain aldehydes to the corresponding alcohols coupled to the oxidation of NADPH. The highest specific activity was observed for the reduction of decanal (85 nmol decanal reduced/min/mg). Short-chain and aromatic aldehydes were not substrates. The enzyme showed no detectable catalysis of the reverse reaction, the oxidation of decanol by NADP(+). The mechanism of the enzyme was probed with several site-specific chemical probes. The possible uses of this enzyme in the production of wax esters are discussed.


Assuntos
Aldeído Oxirredutases/metabolismo , Aldeídos/metabolismo , Proteínas de Bactérias/metabolismo , Coenzimas/farmacologia , Ácidos Graxos/metabolismo , Marinobacter/enzimologia , NADP/farmacologia , Ceras/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Peso Molecular , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
15.
Anal Biochem ; 392(2): 174-6, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19497288

RESUMO

Ion exchange chromatography, one of the major procedures for protein purification, seldom provides single-step purification due to a lack of specific affinity. In this work, a novel and simple method called "back flush" (i.e., reversing the flow direction of elution relative to that of sample loading) was developed to achieve single-step purification on an ion exchanger. Tips for the conditions and operation by back flush are presented. Our study demonstrates, for the first time, the feasibility and dramatic improvement for protein purification by the back-flush method.


Assuntos
Aldeído Oxirredutases/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Proteínas Ativadoras de GTPase/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Cromatografia por Troca Iônica/instrumentação , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/enzimologia
16.
Nat Commun ; 10(1): 4527, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586059

RESUMO

Aldehyde-alcohol dehydrogenase (AdhE) is a key enzyme in bacterial fermentation, converting acetyl-CoA to ethanol, via two consecutive catalytic reactions. Here, we present a 3.5 Å resolution cryo-EM structure of full-length AdhE revealing a high-order spirosome architecture. The structure shows that the aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) active sites reside at the outer surface and the inner surface of the spirosome respectively, thus topologically separating these two activities. Furthermore, mutations disrupting the helical structure abrogate enzymatic activity, implying that formation of the spirosome structure is critical for AdhE activity. In addition, we show that this spirosome structure undergoes conformational change in the presence of cofactors. This work presents the atomic resolution structure of AdhE and suggests that the high-order helical structure regulates its enzymatic activity.


Assuntos
Álcool Desidrogenase/ultraestrutura , Aldeído Oxirredutases/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Acetilcoenzima A/química , Álcool Desidrogenase/isolamento & purificação , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Microscopia Crioeletrônica , Ensaios Enzimáticos , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Etanol/química , Mutação , Conformação Proteica em alfa-Hélice/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
17.
Biochemistry ; 47(20): 5544-55, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18442256

RESUMO

Acetyl-CoA decarbonylase/synthase (ACDS) is a multienzyme complex found in methanogens and certain other Archaea that carries out the overall synthesis and cleavage of the acetyl C-C and C-S bonds of acetyl-CoA. The reaction is involved both in the autotrophic fixation of carbon and in the process of methanogenesis from acetate, and takes place at a unique active site metal center known as the A cluster, located on the beta subunit of the ACDS complex and composed of a binuclear Ni-Ni site bridged by a cysteine thiolate to an Fe4S4 center. In this work, a high rate of acetyl-CoA synthesis was achieved with the recombinant ACDS beta subunit by use of methylcobinamide as an appropriate mimic of the physiological base-off corrinoid substrate. The redox dependence of acetyl-CoA synthesis exhibited one-electron Nernst behavior, and the effects of pH on the observed midpoint potential indicated that reductive activation of the A cluster also involves protonation. Initial burst kinetic studies indicated the formation of stoichiometric amounts of an A cluster-acetyl adduct, further supported by direct chromatographic isolation of an active enzyme-acetyl species. Titration experiments indicated that two electrons are required for activation of the enzyme in the process of forming the enzyme-acetyl intermediate. The results also established that the A cluster-acetyl species undergoes reductive elimination of the acetyl group with the simultaneous release of two, low potential electron equivalents. Thus, the one-electron Nernst behavior can be interpreted as the sum of two separate, low potential, one-electron steps. The results tend to exclude reaction mechanisms involving either one- or three-electron reduced forms of the A cluster as immediate precursors to the acetyl species. A scheme involving a [Fe4S4]1+-Ni1+ species is favored over a [Fe4S4]2+-Ni0 form. The role of proton uptake in the possible formation of a Ni2+-hydride intermediate is also discussed. Trapping of electrons during the formation of the A cluster-acetyl species from substrates CO and methylcobinamide was found to be highly favorable, thus presenting a means for extensive activation of the enzyme under otherwise nonpermissive physiological redox potentials.


Assuntos
Aldeído Oxirredutases/metabolismo , Elétrons , Methanosarcina/metabolismo , Complexos Multienzimáticos/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Catálise , Ativação Enzimática , Methanosarcina/genética , Modelos Moleculares , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Oxirredução , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Especificidade por Substrato
18.
Biochim Biophys Acta ; 1770(11): 1585-92, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17916405

RESUMO

Following induction with D-phenylglycine both d-phenylglycine aminotransferase activity and benzoylformate decarboxylase activity were observed in cultures of Pseudomonas stutzeri ST-201. Induction with benzoylformate, on the other hand, induced only benzoylformate decarboxylase activity. Purification of the benzoylformate decarboxylase, followed by N-terminal sequencing, enabled the design of probes for hybridization with P. stutzeri ST-201 genomic DNA libraries. Sequencing of two overlapping genomic DNA restriction fragments revealed two open reading frames which were denoted dpgB and dpgC. Sequence alignments suggested that the genes encoded a thiamin-diphosphate-dependent decarboxylase and an aldehyde dehydrogenase, respectively. Both genes were isolated and expressed in Escherichia coli. The dpgB gene product was confirmed as a benzoylformate decarboxylase while the dpgC gene product was characterized as a NAD+/NADP+-dependent benzaldehyde dehydrogenase. In keeping with their high sequence identities (both greater than 85%) the kinetic properties of the two enzymes were similar to those of the homologous enzymes in the mandelate pathway of Pseudomonas putida ATCC 12633. However, Pseudomonas stutzeri ST-201 was unable to grow on either isomer of mandelate, and sequencing indicated that the dpgB gene did not form part of an operon. Thus it appears that the two enzymes form part of a d-phenylglycine, rather than mandelate, degrading pathway.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/isolamento & purificação , Benzaldeído Desidrogenase (NADP+)/química , Benzaldeído Desidrogenase (NADP+)/isolamento & purificação , Carboxiliases/química , Carboxiliases/isolamento & purificação , Glicina/análogos & derivados , Pseudomonas stutzeri/enzimologia , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Benzaldeído Desidrogenase (NADP+)/metabolismo , Carboxiliases/metabolismo , Escherichia coli/genética , Glicina/metabolismo , Dados de Sequência Molecular , NAD/fisiologia , NADP/fisiologia , Pseudomonas stutzeri/crescimento & desenvolvimento , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
19.
Biosci Biotechnol Biochem ; 72(1): 155-62, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18175913

RESUMO

4-N-trimethylaminobutyraldehyde dehydrogenase from Pseudomonas sp. 13CM was purified 14-fold to apparent homogeneity by hydrophobic chromatography on a Phenyl-Toyopearl, and affinity chromatography was done on a 5'-AMP Sepharose4B in the presence of dithiothreitol. The enzyme was found to be a trimer with identical 55 kDa subunits. The isoeletric point was found to be 5.5. The optimum temperature and pH were 40 degrees C and pH 10.0. The purified enzyme was further characterized with respect to substrate specificity, kinetic parameters, and analog inhibition. The K(m) values for 4-N-trimethylaminobutyraldehyde, 4-dimethylaminobutyraldehyde, and NAD(+) were 7.4, 51, and 125 microM respectively. The enzyme was inhibited by SH reagents, and by heavy metal ions.


Assuntos
Aldeído Oxirredutases/metabolismo , Pseudomonas/enzimologia , Aldeído Oxirredutases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia de Afinidade , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Indicadores e Reagentes , Focalização Isoelétrica , Cinética , Peso Molecular , Sefarose
20.
Colloids Surf B Biointerfaces ; 163: 41-46, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274566

RESUMO

Formaldehyde dehydrogenase (FaldDH) is used as a catalyst to reduce formate to formaldehyde in a cascade reaction to convert CO2 to methanol. This enzyme, however, has low activity and is sensitive to substrate/product concentration and pH. To improve the performance of FaldDH, it can be immobilized through physical adsorption in siliceous mesostructured cellular foams (MCF), which physical properties are suitable for the immobilization of large molecules as FaldDH (molecular size of 8.6 × 8.6 × 19 nm). In this work two MCF materials were synthesized: MCF1 with a pore size of 26.8 nm and window size of 10.5 nm; and MCF2 with a pore size of 32.9 nm and window size of 13.0 nm. The surfaces of the materials were functionalized with octyl, mercaptopropyl or chloromethyl groups. FaldDH was successfully immobilized inside all the materials, yielding enzyme loadings of about 300 mg g-1 in MCF1 and more than 750 mg g-1 in MCF2. However, the enzyme was inactive upon immobilization on MCF1, whereas on MCF2 the enzyme retained its catalytic activity presumably owing to the larger pores of this material and the need for the enzyme to undergo configurational changes during the reaction. Using MCF2 functionalized with mercaptopropyl groups the activity of FaldDH was enhanced beyond that of the free enzyme. Additionally, low leakage of the enzyme from the MCF2 was observed during the reactions. Thus, tailored MCF is a highly attractive material for employment of the FaldDH enzyme.


Assuntos
Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Formaldeído/química , Formiatos/química , Adsorção , Aldeído Oxirredutases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Dióxido de Carbono/química , Ensaios Enzimáticos , Enzimas Imobilizadas/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Metanol/química , Porosidade , Pseudomonas/química , Pseudomonas/enzimologia , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA