Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 632(8023): 39-49, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085542

RESUMO

In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by ß-lactams that bind covalently to inhibit transpeptidases and ß-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed ß-strands of darobactins that target the undruggable ß-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.


Assuntos
Antibacterianos , Bactérias , Produtos Biológicos , Animais , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/metabolismo , Antibióticos beta Lactam/química , Antibióticos beta Lactam/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Sideróforos/metabolismo , Sideróforos/química , Sideróforos/farmacologia
2.
Clin Infect Dis ; 78(Suppl 1): S15-S28, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294108

RESUMO

BACKGROUND: Francisella tularensis, the causative agent of tularemia, is endemic throughout the Northern Hemisphere and requires as few as 10 organisms to cause disease, making this potential bioterrorism agent one of the most infectious bacterial pathogens known. Aminoglycosides, tetracyclines, and, more recently, fluoroquinolones are used for treatment of tularemia; however, data on the relative effectiveness of these and other antimicrobial classes are limited. METHODS: Nine databases, including Medline, Global Health, and Embase, were systematically searched for articles containing terms related to tularemia. Articles with case-level data on tularemia diagnosis, antimicrobial treatment, and patient outcome were included. Patient demographics, clinical findings, antimicrobial administration, and outcome (eg, intubation, fatality) were abstracted using a standardized form. RESULTS: Of the 8878 publications identified and screened, 410 articles describing 870 cases from 1993 to 2023 met inclusion criteria. Cases were reported from 35 countries; more than half were from the United States, Turkey, or Spain. The most common clinical forms were ulceroglandular, oropharyngeal, glandular, and pneumonic disease. Among patients treated with aminoglycosides (n = 452 [52%]), fluoroquinolones (n = 339 [39%]), or tetracyclines (n = 419 [48%]), the fatality rate was 0.7%, 0.9%, and 1.2%, respectively. Patients with pneumonic disease who received ciprofloxacin had no fatalities and the lowest rates of thoracentesis/pleural effusion drainage and intubation compared to those who received aminoglycosides and tetracyclines. CONCLUSIONS: Aminoglycosides, fluoroquinolones, and tetracyclines are effective antimicrobials for treatment of tularemia, regardless of clinical manifestation. For pneumonic disease specifically, ciprofloxacin may have slight advantages compared to other antimicrobials.


Assuntos
Francisella tularensis , Tularemia , Humanos , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Tularemia/epidemiologia , Antibacterianos/uso terapêutico , Ciprofloxacina/uso terapêutico , Aminoglicosídeos/uso terapêutico , Tetraciclinas/uso terapêutico
3.
Clin Infect Dis ; 78(Suppl 1): S55-S63, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294117

RESUMO

BACKGROUND: Neuroinvasive infection with Francisella tularensis, the causative agent of tularemia, is rare. Establishing clinical suspicion is challenging if risk factors or clinical features classically associated with tularemia are absent. Tularemia is treatable with antibiotics; however, there are limited data to inform management of potentially fatal neuroinvasive infection. METHODS: We collected epidemiologic and clinical data on 2 recent US cases of neuroinvasive F. tularensis infection, and performed a literature review of cases of neuroinvasive F. tularensis infection published after 1950. RESULTS: One patient presented with focal neurologic deficits and brain lesions; broad-range molecular testing on resected brain tissue detected F. tularensis. The other patient presented with meningeal signs; tularemia was suspected based on animal exposure, and F. tularensis grew in cerebrospinal fluid (CSF) culture. Both patients received combination antibiotic therapy and recovered from infection. Among 16 published cases, tularemia was clinically suspected in 4 cases. CSF often displayed lymphocytic pleocytosis. Among cases with available data, CSF culture was positive in 13 of 16 cases, and F. tularensis antibodies were detected in 11 of 11 cases. Treatment typically included an aminoglycoside combined with either a tetracycline or a fluoroquinolone. Outcomes were generally favorable. CONCLUSIONS: Clinicians should consider neuroinvasive F. tularensis infection in patients with meningitis and signs suggestive of tularemia or compatible exposures, lymphocyte-predominant CSF, unrevealing standard microbiologic workup, or lack of response to empiric bacterial meningitis treatment. Molecular testing, culture, and serologic testing can reveal the diagnosis. Favorable outcomes can be achieved with directed antibiotic treatment.


Assuntos
Francisella tularensis , Meningite , Tularemia , Animais , Humanos , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Tularemia/microbiologia , Antibacterianos/uso terapêutico , Aminoglicosídeos/uso terapêutico
4.
Clin Infect Dis ; 78(Suppl 1): S29-S37, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294115

RESUMO

BACKGROUND: Tularemia, a potentially fatal zoonosis caused by Francisella tularensis, has been reported from nearly all US states. Information on relative effectiveness of various antimicrobials for treatment of tularemia is limited, particularly for newer classes such as fluoroquinolones. METHODS: Data on clinical manifestations, antimicrobial treatment, and illness outcome of patients with tularemia are provided voluntarily through case report forms to the US Centers for Disease Control and Prevention by state and local health departments. We summarized available demographic and clinical information submitted during 2006-2021 and evaluated survival according to antimicrobial treatment. We grouped administered antimicrobials into those considered effective for treatment of tularemia (aminoglycosides, fluoroquinolones, and tetracyclines) and those with limited efficacy. Logistic regression models with a bias-reduced estimation method were used to evaluate associations between antimicrobial treatment and survival. RESULTS: Case report forms were available for 1163 US patients with tularemia. Francisella tularensis was cultured from a clinical specimen (eg, blood, pleural fluid) in approximately half of patients (592; 50.9%). Nearly three-quarters (853; 73.3%) of patients were treated with a high-efficacy antimicrobial. A total of 27 patients (2.3%) died. After controlling for positive culture as a proxy for illness severity, use of aminoglycosides, fluoroquinolones, and tetracyclines was independently associated with increased odds of survival. CONCLUSIONS: Most US patients with tularemia received high-efficacy antimicrobials; their use was associated with improved odds of survival regardless of antimicrobial class. Our findings provide supportive evidence that fluoroquinolones are an effective option for treatment of tularemia.


Assuntos
Anti-Infecciosos , Francisella tularensis , Tularemia , Humanos , Tularemia/tratamento farmacológico , Tularemia/epidemiologia , Tularemia/prevenção & controle , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Aminoglicosídeos/uso terapêutico , Tetraciclinas/uso terapêutico
5.
J Am Chem Soc ; 146(27): 18427-18439, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946080

RESUMO

Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-ß-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The ß-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.


Assuntos
Aminoglicosídeos , Antígenos O , Pseudomonas aeruginosa , Trissacarídeos , Pseudomonas aeruginosa/imunologia , Antígenos O/química , Antígenos O/imunologia , Trissacarídeos/química , Trissacarídeos/imunologia , Trissacarídeos/síntese química , Aminoglicosídeos/química , Aminoglicosídeos/síntese química , Aminoglicosídeos/imunologia
6.
J Am Chem Soc ; 146(14): 10103-10114, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546392

RESUMO

Apramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete. Herein, the remaining unknown steps of apramycin biosynthesis are reconstituted in vitro, thereby leading to a comprehensive picture of its biological assembly. In particular, phosphomutase AprJ and nucleotide transferase AprK are found to catalyze the conversion of glucose 6-phosphate to NDP-ß-d-glucose as a critical biosynthetic intermediate. Moreover, the dehydrogenase AprD5 and transaminase AprL are identified as modifying this intermediate via introduction of an amino group at the 4″ position without requiring prior 6″-deoxygenation as is typically encountered in aminosugar biosynthesis. Finally, the glycoside hydrolase family 65 protein AprO is shown to utilize NDP-ß-d-glucose or NDP-4"-amino-4"-deoxy-ß-d-glucose to form the 8',1″-O-glycosidic linkage of saccharocin or apramycin, respectively. As the activated sugar nucleotides in all known natural glycosylation reactions involve either NDP-α-d-hexoses or NDP-ß-l-hexoses, the reported chemistry expands the scope of known biological glycosylation reactions to NDP-ß-d-hexoses, with important implications for the understanding and repurposing of aminoglycoside biosynthesis.


Assuntos
Antibacterianos , Vias Biossintéticas , Glucose , Nebramicina/análogos & derivados , Glicosilação , Aminoglicosídeos , Nucleotídeos , Hexoses , Açúcares
7.
Antimicrob Agents Chemother ; 68(2): e0139323, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169309

RESUMO

Aminoglycosides are important treatment options for serious lung infections, but modeling analyses to quantify their human lung epithelial lining fluid (ELF) penetration are lacking. We estimated the extent and rate of penetration for five aminoglycosides via population pharmacokinetics from eight published studies. The area under the curve in ELF vs plasma ranged from 50% to 100% and equilibration half-lives from 0.61 to 5.80 h, indicating extensive system hysteresis. Aminoglycoside ELF peak concentrations were blunted, but overall exposures were moderately high.


Assuntos
Aminoglicosídeos , Antibacterianos , Humanos , Antibacterianos/farmacocinética , Pulmão , Amicacina
8.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470195

RESUMO

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Assuntos
Amicacina , Peptídeos Cíclicos , Infecções por Pseudomonas , Animais , Camundongos , Amicacina/farmacologia , Pseudomonas aeruginosa , Potenciais da Membrana , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
9.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38888319

RESUMO

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Assuntos
Aminoglicosídeos , Antraz , Antibacterianos , Bacillus anthracis , Lipoglicopeptídeos , Testes de Sensibilidade Microbiana , Infecções Respiratórias , Animais , Lipoglicopeptídeos/farmacologia , Coelhos , Antraz/tratamento farmacológico , Antraz/microbiologia , Antraz/mortalidade , Bacillus anthracis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aminoglicosídeos/farmacologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Modelos Animais de Doenças , Levofloxacino/farmacologia , Feminino
10.
Br J Haematol ; 204(6): 2254-2258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593353

RESUMO

We conducted a phase I trial in newly diagnosed acute myeloid leukaemia (AML) to investigate the combination of two novel targeted agents, gemtuzumab ozogamicin (GO) and midostaurin, with intensive chemotherapy in FLT3-mutated AML and CBF leukaemia. Three dose levels of midostaurin and one to three sequential doses of 3 mg/m2 GO in combination with '7 + 3' induction were evaluated. Based on safety findings in 12 patients, our results show that 3 mg/m2 GO on Days 1 + 4 and 100 mg midostaurin on Days 8-21 can be safely combined with IC in newly diagnosed AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Gemtuzumab , Leucemia Mieloide Aguda , Estaurosporina , Humanos , Estaurosporina/análogos & derivados , Estaurosporina/administração & dosagem , Estaurosporina/uso terapêutico , Estaurosporina/efeitos adversos , Gemtuzumab/administração & dosagem , Gemtuzumab/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Adulto , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Quimioterapia de Indução , Tirosina Quinase 3 Semelhante a fms/genética , Aminoglicosídeos/administração & dosagem , Aminoglicosídeos/uso terapêutico
11.
J Antimicrob Chemother ; 79(7): 1508-1528, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629462

RESUMO

BACKGROUND: Aminoglycosides (AGs) are important antibiotics in the treatment of Gram-negative sepsis. However, they are associated with the risk of irreversible sensorineural hearing loss (SNHL). Several genetic variants have been implicated in the development of ototoxicity. OBJECTIVES: To evaluate the pharmacogenetic determinants of AG-related ototoxicity. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and was registered on Prospero (CRD42022337769). In Dec 2022, PubMed, Cochrane Library, Embase and MEDLINE were searched. Included studies were those reporting original data on the effect of the AG-exposed patient's genome on the development of ototoxicity. RESULTS: Of 10 202 studies, 31 met the inclusion criteria. Twenty-nine studies focused on the mitochondrial genome, while two studied the nuclear genome. One study of neonates found that 30% of those with the m.1555A > G variant failed hearing screening after AG exposure (level 2 evidence). Seventeen additional studies found the m.1555A > G variant was associated with high penetrance (up to 100%) of SNHL after AG exposure (level 3-4 evidence). Nine studies of m.1494C > T found the penetrance of AG-related SNHL to be up to 40%; however, this variant was also identified in those with SNHL without AG exposure (level 3-4 evidence). The variants m.1005T > C and m.1095T > C may be associated with AG-related SNHL; however, further studies are needed. CONCLUSIONS: This review found that the m.1555A > G and m.1494C > T variants in the MT-RNR1 gene have the strongest evidence in the development of AG-related SNHL, although study quality was limited (level 2-4). These variants were associated with high penetrance of a SNHL phenotype following AG exposure.


Assuntos
Aminoglicosídeos , Antibacterianos , Perda Auditiva Neurossensorial , Ototoxicidade , Farmacogenética , Humanos , Aminoglicosídeos/efeitos adversos , Ototoxicidade/genética , Ototoxicidade/etiologia , Antibacterianos/efeitos adversos , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/induzido quimicamente
12.
J Antimicrob Chemother ; 79(5): 1014-1018, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530861

RESUMO

BACKGROUND: The Acinetobacter baumannii isolate called SMAL, previously used to determine the structures of capsular polysaccharide and lipooligosaccharide, was recovered in Pavia, Italy in 2002 among the collection of aminoglycoside-resistant isolates designated as SMAL type. This type was later called the Italian clone, then ST78. ST78 isolates are now widely distributed. OBJECTIVES: To establish the resistance gene complement and the location and structure of acquired resistance regions in early members of the Italian/ST78 clone. METHODS: The draft genome of SMAL2002 was assembled from Illumina MiSeq reads. Contigs containing resistance genes were joined and located in the chromosome using PCR with custom primers. The resistance profile was determined using disc diffusion. RESULTS: SMAL2002 is an ST78A isolate and includes three aminoglycoside resistance genes, aadB (gentamicin, kanamycin, tobramycin) aphA1 (kanamycin, neomycin) and aac(6')-Ian (amikacin, kanamycin, tobramycin). The aadB gene cassette is incorporated at a secondary site in a relative of the aphA1-containing, IS26-bounded pseudo-compound transposon, PTn6020. The aac(6')-Ian gene is in an adjacent IS26-bounded structure that includes sul2 (sulphonamide) and floR (florfenicol) resistance genes. The two pseudo-compound transposons overlap and are in the chromosomal hutU gene flanked by an 8 bp target site duplication. Although aac(6')-Ian was not noticed previously, the same genes and structures were found in several available draft genomes of early ST78A isolates. CONCLUSIONS: This study highlights the importance of correlating resistance profiles with resistance gene content. The location of acquired resistance genes in the SMAL2002 chromosome represents the original location in the ST78A lineage of ST78.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Cromossomos Bacterianos , Farmacorresistência Bacteriana , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Itália , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana/genética , Humanos , Ilhas Genômicas/genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos/genética , Análise de Sequência de DNA , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/microbiologia , Reação em Cadeia da Polimerase , Genoma Bacteriano , DNA Bacteriano/genética
13.
J Antimicrob Chemother ; 79(7): 1569-1576, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742708

RESUMO

BACKGROUND: The aac(6')-Im (aacA16) amikacin, netilmicin and tobramycin resistance gene cassette had been circulating globally undetected for many years in a sublineage of Acinetobacter baumannii global clone 2. OBJECTIVES: To identify sources for the aac(6')-Im fragment found in A. baumannii. METHODS: MinION long-read sequencing and Unicycler hybrid assemblies were used to determine the genetic context of the aac(6')-Im gene. Quantitative reverse transcriptase PCR was used to measure expression. RESULTS: Among >60 000 non-Acinetobacter draft genomes in the MRSN collection, the aac(6')-Im gene was detected in Pseudomonas putida and Enterobacter hormaechei isolates recovered from patients in Thailand between 2016 and 2019. Genomes of multiply resistant P. putida MRSN365855 and E. hormaechei MRSN791417 were completed. The class 1 integron containing the aac(6')-Im cassette was in the chromosome in MRSN365855, and in an HI2 plasmid in MRSN791417. However, MRSN791417 was amikacin susceptible and the gene was not expressed due to loss of the Pc promoter of the integron. Further examples of aac(6')-Im in plasmids from or the chromosome of various Gram-negative species were found in the GenBank nucleotide database. The aac(6')-Im context in integrons in pMRSN791417-8 and a Klebsiella plasmid pAMR200031 shared similarities with the aac(6')-Im region of AbGRI2-Im islands in A. baumannii. In other cases, the cassette array including the aac(6')-Im cassette was different. CONCLUSIONS: The aac(6')-Im gene is widespread, being found so far in several different species and in several different gene cassette arrays. The lack of amikacin resistance in E. hormaechei highlights the importance of correlating resistance gene content and antibiotic resistance phenotype.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Tailândia , Integrons/genética , Plasmídeos/genética , Amicacina/farmacologia , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Proteínas de Bactérias/genética , Tobramicina/farmacologia , Acetiltransferases/genética , Genoma Bacteriano
14.
J Antimicrob Chemother ; 79(2): 383-390, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134316

RESUMO

BACKGROUND: SmeYZ is a constitutively expressed efflux pump in Stenotrophomonas maltophilia. Previous studies demonstrated that: (i) smeYZ inactivation causes compromised swimming, oxidative stress tolerance and aminoglycoside resistance; and (ii) the ΔsmeYZ-mediated pleiotropic defects, except aminoglycoside susceptibility, result from up-regulation of entSCEBB'FA and sbiAB operons, and decreased intracellular iron level. OBJECTIVES: To elucidate the modulatory role of SmeQ, a novel cytoplasmic protein, in ΔsmeYZ-mediated pleiotropic defects. METHODS: The presence of operons was verified using RT-PCR. The role of SmeQ in ΔsmeYZ-mediated pleiotropic defects was assessed using in-frame deletion mutants and functional assays. A bacterial adenylate cyclase two-hybrid assay was used to investigate the protein-protein interactions. Gene expression was quantified using quantitative RT-PCR (RT-qPCR). RESULTS: SmeYZ and the downstream smeQ formed an operon. SmeQ inactivation in the WT KJ decreased aminoglycoside resistance but did not affect swimming and tolerance to oxidative stress or iron depletion. However, smeQ inactivation in the smeYZ mutant rescued the ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. In the WT KJ, SmeQ positively modulated SmeYZ pump function by transcriptionally up-regulating the smeYZQ operon. Nevertheless, in the smeYZ mutant, SmeQ exerted its modulatory role by up-regulating entSCEBB'FA and sbiAB operons, decreasing intracellular iron levels, and causing ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. CONCLUSIONS: SmeQ is the first small protein identified to be involved in efflux pump function in S. maltophilia. It exerts modulatory effect by transcriptionally altering the expression of target genes, which are the smeYZQ operon in the WT KJ, and smeYZQ, entSCEBB'FA and sbiAB operons in smeYZ mutants.


Assuntos
Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Aminoglicosídeos , Ferro/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
15.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582825

RESUMO

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Assuntos
Streptomyces , Fermentação , Streptomyces/genética , Aminoglicosídeos , Antibacterianos , Meios de Cultura
16.
BMC Microbiol ; 24(1): 72, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443813

RESUMO

BACKGROUND: The intrinsic concentration of RpoS, the second most abundant sigma factor, varies widely across the E. coli species. Bacterial isolates that express high levels of RpoS display high resistance to environmental stresses, such as temperature, pH and osmolarity shifts, but are less nutritional competent, making them less capable of utilising alternative nutrient sources. The role of RpoS in antibiotic resistance and persistence in standard laboratory domesticated strains has been examined in several studies, most demonstrating a positive role for RpoS. RESULTS: Using disk diffusion assays we examined bacterial resistance to 15 different antibiotics, including ß -lactams (penicillins, monobactams, carbapenems and cephalosporins), aminoglycosides, quinolones and anti-folates, in a representative collection of 328 E. coli natural isolates displaying a continuum of different levels of RpoS. There was an overall trend that isolates with higher levels of RpoS were slightly more resistant to these antibiotics. In addition, the effect of RpoS on bacterial tolerance and persistence to 3 different antibiotics - ampicillin, ciprofloxacin and kanamycin was evaluated through time-kill curves. Again, there was a small beneficial effect of RpoS on tolerance and persistence to these antibiotics, but this difference was not statistically significant. Finally, a K-12 strain expressing high levels of RpoS was compared with its isogenic RpoS-null counterpart, and no significant effect of RpoS was found. CONCLUSION: Based on a representative collection of the species E. coli, RpoS was found to have a very small impact on antibiotic resistance, tolerance, or persistence.


Assuntos
Antibacterianos , Escherichia coli , Escherichia coli/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Canamicina , Aminoglicosídeos
17.
Exp Dermatol ; 33(3): e15042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459626

RESUMO

In the context of rare genetic diseases caused by nonsense mutations, the concept of induced stop codon readthrough (SCR) represents an attractive avenue in the ongoing search for improved treatment options. Epidermolysis bullosa (EB)-exemplary for this group of diseases-describes a diverse group of rare, blistering genodermatoses. Characterized by extreme skin fragility upon minor mechanical trauma, the most severe forms often result from nonsense mutations that lead to premature translation termination and loss of function of essential proteins at the dermo-epidermal junction. Since no curative interventions are currently available, medical care is mainly limited to alleviating symptoms and preventing complications. Complementary to attempts of gene, cell and protein therapy in EB, SCR represents a promising medical alternative. While gentamicin has already been examined in several clinical trials involving EB, other potent SCR inducers, such as ataluren, may also show promise in treating the hitherto non-curative disease. In addition to the extensively studied aminoglycosides and their derivatives, several other substance classes-non-aminoglycoside antibiotics and non-aminoglycoside compounds-are currently under investigation. The extensive data gathered in numerous in vitro experiments and the perspectives they reveal in the clinical setting will be discussed in this review.


Assuntos
Códon sem Sentido , Epidermólise Bolhosa , Humanos , Códon de Terminação , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/terapia
18.
Chemistry ; 30(19): e202400017, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38284753

RESUMO

The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.


Assuntos
Aminoglicosídeos , Fosfatos Açúcares , Paládio , Escherichia coli , Antibacterianos/farmacologia , Catálise
19.
Biotechnol Bioeng ; 121(9): 2648-2661, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38686918

RESUMO

Microbial-derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug-resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low-yield biosynthetic gene clusters in the genus Streptomyces. However, low natural product yields-improvements to which have been hindered by the lack of high throughput methods-have slowed the discovery and development of many potential therapeutics. Here, we describe our efforts to improve yields of landomycins-angucycline family polyketides under investigation as cancer therapeutics-by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products are absorbed in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by the exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces, as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.


Assuntos
Aminoglicosídeos , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Humanos , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Espectrofotometria , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
20.
Arch Microbiol ; 206(4): 154, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478112

RESUMO

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.


Assuntos
Ciprofloxacina , Klebsiella pneumoniae , Humanos , Ciprofloxacina/farmacologia , Klebsiella pneumoniae/genética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA