RESUMO
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Animais , Apolipoproteínas/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Colágeno/metabolismo , Evolução Molecular , Humanos , Mucinas/metabolismo , Família Multigênica , Transporte Proteico , Proteínas/químicaRESUMO
Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.
Assuntos
Hepacivirus , Hepatite C , Evasão da Resposta Imune , Lipoproteínas HDL , Proteínas do Envelope Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas do Envelope Viral/metabolismo , Células HEK293RESUMO
Lecithin:cholesterol acyltransferase (LCAT) exhibits α-activity on high-density and ß-activity on low-density lipoproteins. However, the molecular determinants governing LCAT activation by different apolipoproteins remain elusive. Uncovering these determinants would offer the opportunity to design and explore advanced therapies against dyslipidemias. Here, we have conducted coarse-grained and all-atom molecular dynamics simulations of LCAT with nanodiscs made with α-helical amphiphilic peptides either derived from apolipoproteins A1 and E (apoA1 and apoE) or apoA1 mimetic peptide 22A that was optimized to activate LCAT. This study aims to explore what drives the binding of peptides to our previously identified interaction site in LCAT. We hypothesized that this approach could be used to screen for binding sites of LCAT in different apolipoproteins and would provide insights to differently localized LCAT activities. Our screening approach was able to discriminate apoA1 helixes 4, 6, and 7 as key contributors to the interaction with LCAT supporting the previous research data. The simulations provided detailed molecular determinants driving the interaction with LCAT: the formation of hydrogen bonds or salt bridges between peptides E4 or D4 and LCAT S236 or K238 residues. Additionally, salt bridging between R7 and D73 was observed, depending on the availability of R7. Expanding our investigation to diverse plasma proteins, we detected novel LCAT binding helixes in apoL1, apoB100, and serum amyloid A. Our findings suggest that the same binding determinants, involving E4 or D4 -S236 and R7-D73 interactions, influence LCAT ß-activity on low-density lipoproteins, where apoE and or apoB100 are hypothesized to interact with LCAT.
Assuntos
Apolipoproteína A-I , Apolipoproteínas , Simulação de Dinâmica Molecular , Fosfatidilcolina-Esterol O-Aciltransferase , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Sítios de Ligação , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Nanoestruturas/química , Ligação Proteica , Apolipoproteínas E/química , Apolipoproteínas E/metabolismoRESUMO
The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).
Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Apolipoproteínas L , Apolipoproteína L1/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , MiosinasRESUMO
Alcohol binge drinking allows the translocation of bacterial lipopolysaccharide (LPS) from the gut to the blood, which activates the peripheral immune system with consequences in neuroinflammation. A possible access/direct signaling of LPS to/in the brain has not yet been described under alcohol abuse conditions. Apolipoproteins are compounds altered by alcohol with high affinity to LPS which may be involved in its transport to the brain or in its elimination. Here, we explored the expression of small components of LPS, in its free form or bound to apolipoproteins, in the brain of female and male rats exposed to alcohol binges. Animals received ethanol oral gavages (3 g/kg every 8 h) for 4 days. LPS or its components (Lipid A and core), LPS-binding protein, corticosterone, lipoproteins (HDL, LDL), apolipoproteins (ApoAI, ApoB, and ApoE), and their receptors were measured in plasma and/or in nonperfused prefrontal cortex (PFC) and cerebellum. Brain LipidA-apolipoprotein aggregates were determined by Western blotting and confirmed by co-immunoprecipitation. In animals exposed to alcohol binges: 1) plasma LPS-binding protein was elevated in both sexes; 2) females showed elevations in plasma ApoAI and corticosterone levels; 3) Lipid A formed aggregates with ApoAI in the female PFC and with ApoB in males, the latter showing Toll-like receptor 4 upregulation in PFC but not females. These results suggest that small bacterial components are present within the brain, forming aggregates with different apolipoproteins, depending on the sex, after alcohol binge intoxications. Results may have implications for the crosstalk between alcohol, LPS, and neuroinflammation.
Assuntos
Etanol , Lipopolissacarídeos , Ratos , Masculino , Feminino , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Doenças Neuroinflamatórias , Lipídeo A/metabolismo , Corticosterona/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Apolipoproteínas B/metabolismoRESUMO
BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismoRESUMO
BACKGROUND: Sepsis is a severe condition characterized by acute organ dysfunction resulting from an imbalanced host immune response to infections. Apolipoprotein H (APOH) is a critical plasma protein that plays a crucial role in regulating various biological processes. However, the precise role of APOH in the immunopathology of paediatric sepsis remains unclear. METHODS: In this study, we evaluated the concentration of APOH in paediatric patients with sepsis and healthy individuals. In an experimental sepsis model of caecal ligation and puncture (CLP), the impact of APOH on survival, organ injury, and inflammation was measured. Furthermore, the anti-inflammatory effects of APOH were investigated across diverse immune cell types, encompassing peripheral blood mononuclear cells (PBMCs), peritoneal macrophages (PMs), bone marrow-derived macrophages (BMDMs), and RAW 264.7 macrophages. RESULTS: In the pilot cohort, the relative abundance of APOH was found to be decreased in patients with sepsis (2.94 ± 0.61) compared to healthy controls (1.13 ± 0.84) (p < 0.001), non-survivors had lower levels of APOH (0.50 ± 0.37) compared to survivors (1.45 ± 0.83) (p < 0.05). In the validation cohort, the serum concentration of APOH was significantly decreased in patients with sepsis (202.0 ± 22.5 ng/ml) compared to healthy controls (409.5 ± 182.9 ng/ml) (p < 0.0001). The application of recombinant APOH protein as a therapeutic intervention significantly lowered the mortality rate, mitigated organ injury, and suppressed inflammation in mice with severe sepsis. In contrast, neutralizing APOH with an anti-APOH monoclonal antibody increased the mortality rate, exacerbated organ injury, and intensified inflammation in mice with non-severe sepsis. Intriguingly, APOH exhibited minimal effects on the bacterial burden, neutrophil, and macrophage counts in the sepsis mouse model, along with negligible effects on bacterial phagocytosis and killing during Pseudomonas aeruginosa infection in PMs, RAW 264.7 cells, and PBMCs. Mechanistic investigations in PMs and RAW 264.7 cells revealed that APOH inhibited M1 polarization in macrophages by suppressing toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signalling pathway. CONCLUSION: This proof-of-concept study demonstrated that APOH has a protective role in the host defense response to sepsis, highlighting the potential therapeutic value of APOH in sepsis treatment.
Assuntos
Leucócitos Mononucleares , Sepse , Animais , Criança , Humanos , Camundongos , beta 2-Glicoproteína I , Inflamação , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Fagocitose , Apolipoproteínas/metabolismoRESUMO
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-ß (Aß) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aß1-40 and Aß1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aß aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aß aggregation.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteínas E , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismoRESUMO
Although apolipoproteins (apo) were initially acknowledged as major determinants in lipoprotein metabolism and cardiovascular disease, the findings of recent studies have revealed the significance of multiple apolipoprotein classes and subclasses in various biological processes and pathophysiological pathways [...].
Assuntos
Apolipoproteínas , Doenças Cardiovasculares , Humanos , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/metabolismo , AnimaisRESUMO
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, accounting for 32% of global deaths, according to the World Health Organization (WHO) [...].
Assuntos
Apolipoproteínas , Doenças Cardiovasculares , Lipoproteínas , Humanos , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/metabolismo , Lipoproteínas/metabolismoRESUMO
Hepatic steatosis is an initial manifestation of alcoholic liver disease. An imbalance of hepatic lipid processes including fatty acid uptake, esterification, oxidation, and triglyceride secretion leads to alcoholic fatty liver (AFL). However, the precise molecular mechanisms underlying the pathogenesis of AFL remain elusive. Here, we show that mice deficient in microRNAs (miRs)-141 and -200c display resistance to the development of AFL. We found that miR-200c directly targets HNF1 homeobox B (Hnf1b), a transcriptional activator for microsomal triglyceride transfer protein (Mttp), as well as apolipoprotein O (ApoO), an integral component of the mitochondrial contact site and cristae organizing system complex. We show that expression of these miRs is significantly induced by chronic ethanol exposure, which is accompanied by reduced HNF1B and APOO levels. Furthermore, miR-141/200c deficiency normalizes ethanol-mediated impairment of triglyceride secretion, which can be attributed to the restored levels of HNF1B and MTTP, as well as phosphatidylcholine abundance. Moreover, we demonstrate that miR-141/200c deficiency restores ethanol-mediated inhibition of APOO expression and mitochondrial dysfunction, improving mitochondrial antioxidant defense capacity and fatty acid oxidation. Taken together, these results suggest that miR-200c contributes to the modulation of lipid homeostasis in AFL disease by cooperatively regulating Hnf1b and ApoO functions.
Assuntos
Apolipoproteínas , Fígado Gorduroso Alcoólico , Fator 1-alfa Nuclear de Hepatócito , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Apolipoproteínas/metabolismo , Etanol/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Genes Homeobox , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Homeostase , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismoRESUMO
AIM: This study aims to investigate the associations between genetic risk scores (GRS) for favourable and unfavourable adiposity and a wide range of adiposity-related outcomes across diverse populations. METHODS: We utilised previously identified variants associated with favourable (36 variants) and unfavourable (38 variants) adiposity to create GRS for each adiposity phenotype. We used summary statistics from 39 outcomes generated by the Pan-UKB genome-wide association studies Version 0.3, incorporating covariates such as age, sex and principal components in six populations: European (n = 420,531), African (6636), American (980), Central/South Asian (8876), East Asian (2709) and Middle Eastern (1599). RESULTS: The favourable adiposity GRS was associated with a healthy metabolic profile, including lower risk of type 2 diabetes, lower liver enzyme levels, lower blood pressure, higher HDL-cholesterol, lower triglycerides, higher apolipoprotein A, lower apolipoprotein B, higher testosterone, lower calcium and lower insulin-like growth factor 1 generally consistently across all the populations. In contrast, the unfavourable adiposity GRS was associated with an adverse metabolic profile, including higher risk of type 2 diabetes, higher random glucose levels, higher HbA1c, lower HDL-cholesterol, higher triglycerides, higher liver enzyme levels, lower testosterone, and higher C-reactive protein generally consistently across all the populations. CONCLUSION: The study provides evidence that the genetic scores associated with favourable and unfavourable adiposity have consistent effects on metabolic profiles and disease risk across diverse ethnic groups. These findings deepen our understanding of distinct adiposity subtypes and their impact on metabolic health.
Assuntos
Adiposidade , Diabetes Mellitus Tipo 2 , Humanos , Adiposidade/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Etnicidade/genética , Estudo de Associação Genômica Ampla , Obesidade/epidemiologia , Obesidade/genética , Fatores de Risco , HDL-Colesterol/metabolismo , Triglicerídeos , Metaboloma , Testosterona , Apolipoproteínas/genética , Apolipoproteínas/metabolismoRESUMO
The main role of cholesteryl ester transfer protein (CETP) is the transfer of cholesteryl esters and triglycerides between high-density lipoprotein (HDL) particles and triglyceride-rich lipoprotein and low-density lipoprotein (LDL) particles. There is a long history of investigations regarding the inhibition of CETP as a target for reducing major adverse cardiovascular events. Initially, the potential effect on cardiovascular events of CETP inhibitors was hypothesized to be mediated by their ability to increase HDL cholesterol, but, based on evidence from anacetrapib and the newest CETP inhibitor, obicetrapib, it is now understood to be primarily due to reducing LDL cholesterol and apolipoprotein B. Nevertheless, evidence is also mounting that other roles of HDL, including its promotion of cholesterol efflux, as well as its apolipoprotein composition and anti-inflammatory, anti-oxidative, and anti-diabetic properties, may play important roles in several diseases beyond cardiovascular disease, including, but not limited to, Alzheimer's disease, diabetes, and sepsis. Furthermore, although Mendelian randomization analyses suggested that higher HDL cholesterol is associated with increased risk of age-related macular degeneration (AMD), excess risk of AMD was absent in all CETP inhibitor randomized controlled trial data comprising over 70,000 patients. In fact, certain HDL subclasses may, in contrast, be beneficial for treating the retinal cholesterol accumulation that occurs with AMD. This review describes the latest biological evidence regarding the relationship between HDL and CETP inhibition for Alzheimer's disease, type 2 diabetes mellitus, sepsis, and AMD.
Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Sepse , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , HDL-Colesterol , Proteínas de Transferência de Ésteres de Colesterol , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Doença de Alzheimer/complicações , Colesterol/metabolismo , Apolipoproteínas/metabolismo , Sepse/complicaçõesRESUMO
BACKGROUND: Migration of human aortic smooth muscle cells (HASMCs) contributes to the pathogenesis of atherosclerosis. This study aims to functionally characterize long noncoding RNA TPRG1-AS1 (tumor protein p63 regulated 1, antisense 1) in HASMCs and reveal the underlying mechanism of TPRG1-AS1 in HASMCs migration, neointima formation, and subsequent atherosclerosis. METHODS: The expression of TPRG1-AS1 in atherosclerotic plaques was verified a series of in silico analysis and quantitative real-time polymerase chain reaction analysis. Northern blot, rapid amplification of cDNA ends and Sanger sequencing were used to determine its full length. In vitro transcription-translation assay was used to investigate the protein-coding capacity of TPRG1-AS1. RNA fluorescent in situ hybridization was used to confirm its subcellular localization. Loss- and gain-of-function studies were used to investigate the function of TPRG1-AS1. Furthermore, the effect of TPRG1-AS1 on the pathological response was evaluated in carotid balloon injury model, wire injury model, and atherosclerosis model, respectively. RESULTS: TPRG1-AS1 was significantly increased in atherosclerotic plaques. TPRG1-AS1 did not encode any proteins and its full length was 1279nt, which was bona fide a long noncoding RNA. TPRG1-AS1 was mainly localized in cytoplasmic and perinuclear regions in HASMCs. TPRG1-AS1 directly interacted with MYH9 (myosin heavy chain 9) protein in HASMCs, promoted MYH9 protein degradation through the proteasome pathway, hindered F-actin stress fiber formation, and finally inhibited HASMCs migration. Vascular smooth muscle cell-specific transgenic overexpression of TPRG1-AS1 significantly reduced neointima formation, and attenuated atherosclerosis in apolipoprotein E knockout (Apoe-/-) mice. CONCLUSIONS: This study demonstrated that TPRG1-AS1 inhibited HASMCs migration through interacting with MYH9 protein and consequently suppressed neointima formation and atherosclerosis.
Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Placa Aterosclerótica/metabolismo , Actinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , DNA Complementar/metabolismo , DNA Complementar/farmacologia , Hibridização in Situ Fluorescente , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento Celular , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , MicroRNAs/genética , Proteínas do Citoesqueleto/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas/metabolismoRESUMO
OBJECTIVE: Environmental exposures exacerbate age-related pathologies, such as cardiovascular and neurodegenerative diseases. Nanoparticulates, and specifically carbon nanomaterials, are a fast-growing contributor to the category of inhalable pollutants, whose risks to health are only now being unraveled. The current study assessed the exacerbating effect of age on multiwalled-carbon nanotube (MWCNT) exposure in young and old C57BL/6 and ApoE-/- mice. MATERIALS AND METHODS: Female C57BL/6 and apolipoprotein E-deficient (ApoE-/-) mice, aged 8 weeks and 15 months, were exposed to 0 or 40 µg MWCNT via oropharyngeal aspiration. Pulmonary inflammation, inflammatory bioactivity of serum, and neurometabolic changes were assessed at 24 h post-exposure. RESULTS: Pulmonary neutrophil infiltration was induced by MWCNT in bronchoalveolar lavage fluid in both C57BL/6 and ApoE-/-. Macrophage counts decreased with MWCNT exposure in ApoE-/- mice but were unaffected by exposure in C57BL/6 mice. Older mice appeared to have greater MWCNT-induced total protein in lavage fluid. BALF cytokines and chemokines were elevated with MWCNT exposure, but CCL2, CXCL1, and CXCL10 showed reduced responses to MWCNT in older mice. However, no significant serum inflammatory bioactivity was detected. Cerebellar metabolic changes in response to MWCNT were modest, but age and strain significantly influenced metabolite profiles assessed. ApoE-/- mice and older mice exhibited less robust metabolite changes in response to exposure, suggesting a reduced health reserve. CONCLUSIONS: Age influences the pulmonary and neurological responses to short-term MWCNT exposure. However, with only the model of moderate aging (15 months) in this study, the responses appeared modest compared to inhaled toxicant impacts in more advanced aging models.
Assuntos
Nanotubos de Carbono , Feminino , Animais , Camundongos , Nanotubos de Carbono/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Exposição por Inalação/efeitos adversosRESUMO
Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1ß and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk.
Assuntos
Monócitos , Tromboplastina , Humanos , Apolipoproteína C-III/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Monócitos/metabolismo , RNA Mensageiro/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismoRESUMO
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Assuntos
Relógios Circadianos , Metabolismo dos Lipídeos , Camundongos , Animais , Metabolismo dos Lipídeos/genética , Encéfalo/metabolismo , Ritmo Circadiano/genética , Núcleo Supraquiasmático/metabolismo , Relógios Circadianos/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Mamíferos/metabolismoRESUMO
In normal pregnancy, hepatic metabolism adaptation occurs with an increase in lipid biosynthesis. Placental shedding of syncytiotrophoblast-derived extracellular vesicles (STBEVs) into the maternal circulation constitutes a major signalling mechanism between foetus and mother. We investigated whether STBEVs from normal pregnant women might target liver cells in vitro and induce changes in lipid synthesis. This study was performed at the Nuffield Department of Women's & Reproductive Health, Oxford, UK. STBEVs were obtained by dual-lobe placental perfusion from 11 normal pregnancies at term. Medium/large and small STBEVs were collected by ultracentrifugation at 10,000g and 150,000g, respectively. STBEVs were analysed by Western blot analysis and flow cytometry for co-expression of apolipoprotein-E (apoE) and placental alkaline phosphatase (PLAP). The uptake of STBEVs by liver cells and the effect on lipid metabolism was evaluated using a hepatocarcinoma cell line (HepG2 cells). Data were analysed by one-way ANOVA and Student's t test. We demonstrated that: (a) STBEVs carry apoE; (b) HepG2 cells take up STBEVs through an apoE-LDL receptor interaction; (c) STBEV incorporation into HepG2 cells resulted in (i) increased cholesterol release (ELISA); (ii) increased expression of the genes SQLE and FDPS (microarray) involved in cholesterol biosynthesis; (iii) downregulation of the CLOCK gene (microarray and PCR), involved in the circadian negative control of lipid synthesis in liver cells. In conclusion, the placenta may orchestrate the metabolic adaptation of the maternal liver through release of apoE-positive STBEVs, by increasing lipid synthesis in a circadian-independent fashion, meeting the nutritional needs of the growing foetus.
Assuntos
Vesículas Extracelulares , Trofoblastos , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Lipídeos , Fígado , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismoRESUMO
BACKGROUND: Lipoprotein-related traits have been consistently identified as risk factors for atherosclerotic cardiovascular disease, largely on the basis of studies of coronary artery disease (CAD). The relative contributions of specific lipoproteins to the risk of peripheral artery disease (PAD) have not been well defined. We leveraged large-scale genetic association data to investigate the effects of circulating lipoprotein-related traits on PAD risk. METHODS: Genome-wide association study summary statistics for circulating lipoprotein-related traits were used in the mendelian randomization bayesian model averaging framework to prioritize the most likely causal major lipoprotein and subfraction risk factors for PAD and CAD. Mendelian randomization was used to estimate the effect of apolipoprotein B (ApoB) lowering on PAD risk using gene regions proxying lipid-lowering drug targets. Genes relevant to prioritized lipoprotein subfractions were identified with transcriptome-wide association studies. RESULTS: ApoB was identified as the most likely causal lipoprotein-related risk factor for both PAD (marginal inclusion probability, 0.86; P=0.003) and CAD (marginal inclusion probability, 0.92; P=0.005). Genetic proxies for ApoB-lowering medications were associated with reduced risk of both PAD (odds ratio,0.87 per 1-SD decrease in ApoB [95% CI, 0.84-0.91]; P=9×10-10) and CAD (odds ratio,0.66 [95% CI, 0.63-0.69]; P=4×10-73), with a stronger predicted effect of ApoB lowering on CAD (ratio of effects, 3.09 [95% CI, 2.29-4.60]; P<1×10-6). Extra-small very-low-density lipoprotein particle concentration was identified as the most likely subfraction associated with PAD risk (marginal inclusion probability, 0.91; P=2.3×10-4), whereas large low-density lipoprotein particle concentration was the most likely subfraction associated with CAD risk (marginal inclusion probability, 0.95; P=0.011). Genes associated with extra-small very-low-density lipoprotein particle and large low-density lipoprotein particle concentration included canonical ApoB pathway components, although gene-specific effects were variable. Lipoprotein(a) was associated with increased risk of PAD independently of ApoB (odds ratio, 1.04 [95% CI, 1.03-1.04]; P=1.0×10-33). CONCLUSIONS: ApoB was prioritized as the major lipoprotein fraction causally responsible for both PAD and CAD risk. However, ApoB-lowering drug targets and ApoB-containing lipoprotein subfractions had diverse associations with atherosclerotic cardiovascular disease, and distinct subfraction-associated genes suggest possible differences in the role of lipoproteins in the pathogenesis of PAD and CAD.
Assuntos
Apolipoproteínas/metabolismo , Suscetibilidade a Doenças , Doença Arterial Periférica/epidemiologia , Doença Arterial Periférica/etiologia , Alelos , Apolipoproteínas/sangue , Biomarcadores , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Metabolismo dos Lipídeos , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/metabolismo , Vigilância em Saúde Pública , Característica Quantitativa Herdável , Medição de Risco , Fatores de Risco , Transcriptoma , Reino Unido/epidemiologiaRESUMO
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.