Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548402

RESUMO

The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.


Assuntos
Arabis/metabolismo , Flores/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Arabis/genética , Arabis/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética
2.
Int J Phytoremediation ; 26(4): 472-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37599450

RESUMO

In order to study the effects of oxalic acids on plant growth and Pb accumulation in different parts of the plants of intercropping Arabis alpina and Zea mays, pot experiment was conducted to investigate the changes of oxalic acid contents of the plants and Pb accumulation through exogenous oxalic acid addition (0, 5, 25 and 50 mmol kg-1). The results showed the root biomass of intercropped A. alpina and total biomass of Z. mays increased by 3.22 folds and 2.97 folds with 5 mmol kg-1 oxalic acid treatment. The oxalic acid contents of shoots and root secretions decreased by 86.5% and 44.3%, respectively. The BCF (bio-accumulation factor) and TF (translocation factor) of intercropping A. alpina reduced under 25 - 50 mmol kg-1 oxalic acid treatments. There were relationships between exogenous oxalic acid treatment concentrations and oxalic acid contents of A. alpina shoots, Z. mays root secretions. The Pb contents of shoots of A. alpina and Z. mays were related to exogenous oxalic acid additions and oxalic acid contents of shoots. In general, 5 mmol kg-1 oxalic acid treatment, that can improve plant growth of intercropped A. alpina and Z. mays, which Pb translocation and accumulation of A. alpina were promoted, whereas Pb accumulation of A. alpina was inhibited with 25 - 50 mmol kg-1 concentrations addition. This study will provide a basis for promoting the application of phytoremediation techniques and efficient crop production in heavy metal contaminated areas.


Hyperaccumulators intercropped with crops will remediate heavy metal soils or mitigate the damage caused by heavy metals to plants through oxalic acid secretion by the root system. However, the effect of oxalic acid changes on plant growth and Pb accumulation is lacking. Our study investigated the changes in oxalic acid content at different concentrations and sites affected the ability of intercropped plants to grow and accumulate Pb. This work shown that under intercropping conditions, exogenous oxalic acid promotes intercropped plant growth as well as soil pH reduction, Pb content in shoots both Arabis alpina and Zea mays is influenced by exogenous oxalic acid content, while lower Z. mays roots Pb content is determined by a combination of exogenous addition and aboveground oxalic acid content. Low concentrations of oxalic acid promoted Pb enrichment in roots of A. alpina, while reducing the uptake of Pb content in Z. mays. This article gives us a better understanding for the response of intercropping plants to the use of organic acids under heavy metal stress and how to modify their environment so as to favor growth.


Assuntos
Arabis , Poluentes do Solo , Zea mays , Chumbo , Ácido Oxálico , Biodegradação Ambiental , Poluentes do Solo/análise , Plantas
3.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34878144

RESUMO

Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.


Assuntos
Arabis , Genômica , Pólen/genética , Autofertilização , Seleção Sexual
4.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084503

RESUMO

Contemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35 accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago, gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction in spite of their extremely low diversity.


Assuntos
Arabis/classificação , Espécies em Perigo de Extinção , Especiação Genética , Hibridização Genética , Animais , Teorema de Bayes , Fluxo Gênico , Genética Populacional , Simpatria
5.
Proc Biol Sci ; 290(2011): 20231401, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37989245

RESUMO

Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.


Assuntos
Arabis , Arabis/genética , Flores/genética , Geografia , Países Escandinavos e Nórdicos , Europa (Continente)
6.
Ecotoxicol Environ Saf ; 254: 114757, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950987

RESUMO

Soil and water are increasingly at risk of contamination from the toxic heavy metals lead (Pb) and cadmium (Cd). Arabis paniculata (Brassicaceae) is a hyperaccumulator of heavy metals (HMs) found widely distributed in areas impacts by mining activities. However, the mechanism by which A. paniculata tolerates HMs is still uncharacterized. For this experiment, we employed RNA sequencing (RNA-seq) in order to find Cd (0.25 mM)- and Pb (2.50 mM)-coresponsive genes A. paniculata. In total, 4490 and 1804 differentially expressed genes (DEGs) were identified in root tissue, and 955 and 2209 DEGs were identified in shoot tissue, after Cd and Pb exposure, respectively. Interestingly in root tissue, gene expression corresponded similarly to both Cd and Pd exposure, of which 27.48% were co-upregulated and 41.00% were co-downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the co-regulated genes were predominantly involved in transcription factors (TFs), cell wall biosynthesis, metal transport, plant hormone signal transduction, and antioxidant enzyme activity. Many critical Pb/Cd-induced DEGs involved in phytohormone biosynthesis and signal transduction, HM transport, and transcription factors were also identified. Especially the gene ABCC9 was co-downregulated in root tissues but co-upregulated in shoot tissues. The co-downregulation of ABCC9 in the roots prevented Cd and Pb from entering the vacuole rather than the cytoplasm for transporting HMs to shoots. While in shoots, the ABCC9 co-upregulated results in vacuolar Cd and Pb accumulation, which may explain why A. paniculata is a hyperaccumulator. These results will help to reveal the molecular and physiological processes underlying tolerance to HM exposure in the hyperaccumulator A. paniculata, and aid in future efforts to utilize this plant in phytoremediation.


Assuntos
Arabis , Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Arabis/genética , Arabis/metabolismo , Chumbo/análise , Transcriptoma , Metais Pesados/análise , Biodegradação Ambiental , Reguladores de Crescimento de Plantas/metabolismo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
7.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894733

RESUMO

Cadmium (Cd) is a toxic heavy metal that seriously affects metabolism after accumulation in plants, and it also causes adverse effects on humans through the food chain. The HIPP gene family has been shown to be highly tolerant to Cd stress due to its special domain and molecular structure. This study described the Cd-induced gene ApHIPP26 from the hyperaccumulator Arabis paniculata. Its subcellular localization showed that ApHIPP26 was located in the nucleus. Transgenic Arabidopsis overexpressing ApHIPP26 exhibited a significant increase in main root length and fresh weight under Cd stress. Compared with wild-type lines, Cd accumulated much more in transgenic Arabidopsis both aboveground and underground. Under Cd stress, the expression of genes related to the absorption and transport of heavy metals underwent different changes in parallel, which were involved in the accumulation and distribution of Cd in plants, such as AtNRAMP6 and AtNRAMP3. Under Cd stress, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) in the transgenic lines were higher than those in the wild type. The physiological and biochemical indices showed that the proline and chlorophyll contents in the transgenic lines increased significantly after Cd treatment, while the malondialdehyde (MDA) content decreased. In addition, the gene expression profile analysis showed that ApHIPP26 improved the tolerance of Arabidopsis to Cd by regulating the changes of related genes in plant hormone signal transduction pathway. In conclusion, ApHIPP26 plays an important role in cadmium tolerance by alleviating oxidative stress and regulating plant hormones, which provides a basis for understanding the molecular mechanism of cadmium tolerance in plants and provides new insights for phytoremediation in Cd-contaminated areas.


Assuntos
Arabidopsis , Arabis , Metais Pesados , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo
8.
Plant J ; 105(6): 1459-1476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33336445

RESUMO

Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.


Assuntos
Arabis/metabolismo , Citocininas/metabolismo , Caules de Planta/metabolismo , Arabis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Amido/metabolismo
9.
Plant J ; 108(2): 528-540, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390055

RESUMO

Arabidopsis thaliana has become a major plant research model, where interphase nuclear organization exhibits unique features, including nucleolus-associated telomere clustering. The chromocenter (CC)-loop model, or rosette-like configuration, describes intranuclear chromatin organization in Arabidopsis as megabase-long loops anchored in, and emanating from, peripherally positioned CCs, with those containing telomeres associating with the nucleolus. To investigate whether the CC-loop organization is universal across the mustard family (crucifers), the nuclear distributions of centromeres, telomeres and nucleoli were analyzed by fluorescence in situ hybridization in seven diploid species (2n = 10-16) representing major crucifer clades with an up to 26-fold variation in genome size (160-4260 Mb). Nucleolus-associated telomere clustering was confirmed in Arabidopsis (157 Mb) and was newly identified as the major nuclear phenotype in other species with a small genome (215-381 Mb). In large-genome species (2611-4264 Mb), centromeres and telomeres adopted a Rabl-like configuration or dispersed distribution in the nuclear interior; telomeres only rarely associated with the nucleolus. In Arabis cypria (381 Mb) and Bunias orientalis (2611 Mb), tissue-specific patterns deviating from the major nuclear phenotypes were observed in anther and stem tissues, respectively. The rosette-like configuration, including nucleolus-associated telomere clustering in small-genome species from different infrafamiliar clades, suggests that genomic properties rather than phylogenetic position determine the interphase nuclear organization. Our data suggest that nuclear genome size, average chromosome size and degree of longitudinal chromosome compartmentalization affect interphase chromosome organization in crucifer genomes.


Assuntos
Brassicaceae/genética , Nucléolo Celular/genética , Genoma de Planta , Telômero/genética , Arabidopsis/genética , Arabis/genética , Centrômero/genética , Cromatina/genética , DNA Ribossômico/genética , Tamanho do Genoma , Heterocromatina/genética , Hibridização in Situ Fluorescente , Interfase , Filogenia
10.
New Phytol ; 236(2): 729-744, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35832005

RESUMO

Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA+ ATPase of unknown function, FLOWERING REPRESSOR AAA+ ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina.


Assuntos
Arabidopsis , Arabis , Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Arabis/genética , Arabis/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(24): 12078-12083, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31123146

RESUMO

The genetic and molecular analysis of trichome development in Arabidopsis thaliana has generated a detailed knowledge about the underlying regulatory genes and networks. However, how rapidly these mechanisms diverge during evolution is unknown. To address this problem, we used an unbiased forward genetic approach to identify most genes involved in trichome development in the related crucifer species Arabisalpina In general, we found most trichome mutant classes known in A. thaliana We identified orthologous genes of the relevant A. thaliana genes by sequence similarity and synteny and sequenced candidate genes in the A. alpina mutants. While in most cases we found a highly similar gene-phenotype relationship as known from Arabidopsis, there were also striking differences in the regulation of trichome patterning, differentiation, and morphogenesis. Our analysis of trichome patterning suggests that the formation of two classes of trichomes is regulated differentially by the homeodomain transcription factor AaGL2 Moreover, we show that overexpression of the GL3 basic helix-loop-helix transcription factor in A. alpina leads to the opposite phenotype as described in A. thaliana Mathematical modeling helps to explain how this nonintuitive behavior can be explained by different ratios of GL3 and GL1 in the two species.


Assuntos
Arabis/genética , Tricomas/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas/genética , Morfogênese/genética , Mutação/genética , Fenótipo , Fatores de Transcrição/genética
12.
New Phytol ; 229(1): 444-459, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745288

RESUMO

Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) in Arabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.


Assuntos
Proteínas de Arabidopsis , Arabis , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Ann Bot ; 127(6): 737-747, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33555338

RESUMO

BACKGROUND AND AIMS: The transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic-alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer. METHODS: In a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece. KEY RESULTS: The self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories. CONCLUSIONS: Our study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.


Assuntos
Arabis , Polinização , Flores , França , Grécia , Itália , Odorantes , Reprodução , Espanha
14.
Photochem Photobiol Sci ; 20(7): 889-901, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34159569

RESUMO

The present work aimed to compare antioxidant response and lipid peroxide detoxification capacity of an arctic-alpine species Arabis alpina to its close relative model species Arabidopsis thaliana under acute short duration (3 h and 6 h) UV-B stress (4.6 and 8.2 W/m2). After 3 and 6 h exposure to UV-B, A. alpina showed lower lipid peroxidation and H2O2 accumulation when compared to A. thaliana. Moreover, Fv/Fm value of A. thaliana dropped to 0.70, while A. alpina dropped to 0.75 indicating better protection of PSII in this species. For elucidation of the antioxidant response, activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) were measured. SOD induction with 6 h of UV-B was more prominent in A. alpina. Also, A. alpina had higher chloroplastic FeSOD activity when compared to A. thaliana. APX activity was also significantly induced in A. alpina, while its activity decreased at 3 h or did not change at 6 h in A. thaliana. A. alpina was able to maintain constant CAT activity, but drastic decreases were observed in A. thaliana at both time points. Moreover, A. alpina was able to maintain or induce aldehyde dehydrogenase (ALDH), alkenal reductases (AERs) and glutathione-S-transferases (GST) activity, while an opposite trend was observed in A. thaliana. These findings indicate that A. alpina was able to maintain/induce its antioxidant defence and lipid peroxide detoxification conferring better protection against UV-B.


Assuntos
Arabidopsis/metabolismo , Arabis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
15.
J Hered ; 112(1): 67-77, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33211850

RESUMO

Despite decades of research, the evolution of sex remains an enigma in evolutionary biology. Typically, research addresses the costs of sex and asexuality to characterize the circumstances favoring one reproductive mode. Surprisingly few studies address the influence of common traits that are, in many organisms, obligately correlated with asexuality, including hybridization and polyploidy. These characteristics have substantial impacts on traits under selection. In particular, the fitness consequences of hybridization (i.e., reduced fitness due to interspecific reproductive isolation) will influence the evolution of sex. This may comprise a cost of either sex or asexuality due to the link between hybridity and asexuality. We examined reproductive isolation in the formation of de novo hybrid lineages between 2 widespread species in the ecological model system Boechera. Seventeen percent of 664 crosses produced F1 fruits, and only 10% of these were viable, suggesting that postmating prezygotic and postzygotic barriers inhibit hybrid success in this system. The postmating prezygotic barrier was asymmetrical, with 110 of 115 total F1 fruits produced when Boechera stricta acted as maternal parent. This asymmetry was confirmed in wild-collected lineages, using a chloroplast phylogeny of wild-collected B. stricta, Boechera retrofracta, and hybrids. We next compared fitness of F2 hybrids and selfed parental B. stricta lines, finding that F2 fitness was reduced by substantial hybrid sterility. Multiple reproductively isolating barriers influence the formation and fitness of hybrid lineages in the wild, and the costs of hybridization likely have profound impacts on the evolution of sex in the natural environment.


Assuntos
Arabis/genética , Hibridização Genética , Isolamento Reprodutivo , Colorado , DNA de Cloroplastos/genética , Aptidão Genética , Genética Populacional , Idaho , Montana , Filogenia , Reprodução Assexuada , Sexo
16.
Proc Natl Acad Sci U S A ; 115(4): 816-821, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301967

RESUMO

Plant mating systems have profound effects on levels and structuring of genetic variation and can affect the impact of natural selection. Although theory predicts that intermediate outcrossing rates may allow plants to prevent accumulation of deleterious alleles, few studies have empirically tested this prediction using genomic data. Here, we study the effect of mating system on purifying selection by conducting population-genomic analyses on whole-genome resequencing data from 38 European individuals of the arctic-alpine crucifer Arabis alpina We find that outcrossing and mixed-mating populations maintain genetic diversity at similar levels, whereas highly self-fertilizing Scandinavian A. alpina show a strong reduction in genetic diversity, most likely as a result of a postglacial colonization bottleneck. We further find evidence for accumulation of genetic load in highly self-fertilizing populations, whereas the genome-wide impact of purifying selection does not differ greatly between mixed-mating and outcrossing populations. Our results demonstrate that intermediate levels of outcrossing may allow efficient selection against harmful alleles, whereas demographic effects can be important for relaxed purifying selection in highly selfing populations. Thus, mating system and demography shape the impact of purifying selection on genomic variation in A. alpina These results are important for an improved understanding of the evolutionary consequences of mating system variation and the maintenance of mixed-mating strategies.


Assuntos
Arabis/genética , Seleção Genética , Autofertilização , Europa (Continente) , Geografia , Mutação , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
17.
Genomics ; 112(1): 729-735, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085222

RESUMO

We performed a pooled whole-genome sequencing on samples of the alpine plant Arabis alpina, harvested in ten populations along an elevation gradient in the French Alps. A large dataset of genetic variations was produced as single nucleotide polymorphisms (SNPs). A combined genome scan approach enabled detecting genomic regions associated with a synthetic environmental variable characterizing the climate at each sampling location. Positive loci detected by two methods were retained and belong to 19 regions in the Arabis alpina genome. The most significant region harbors an ortholog of the AtNAC062 gene, encoding a membrane-bound transcription factor described as linking the cold response and pathogen resistance that may confer protection to plants under extended snow coverage at high elevations. Other genes involved in the stress response or in flowering regulation were also detected. Altogether, our results indicated that Arabis alpina represent a suitable model for studying genomic adaptation in alpine perennial plants.


Assuntos
Aclimatação/genética , Arabis , Resposta ao Choque Frio/genética , Loci Gênicos , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Arabis/genética , Arabis/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Trop Anim Health Prod ; 53(5): 465, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546468

RESUMO

The current research was conducted to compare the effect of various buffers or alkalizers in Arabi lambs and find new and less expensive buffering resources. Forty-five Arabi lambs with an average weight of 29.37 ± 3.63 kg were used in a completely randomized design with five treatments and nine replicates. Treatments included 1 - control diet (no buffer); 2 - base diet + 0.75% sodium sesquicarbonate, 0.75% sodium bicarbonate; 3 - base diet + 2% zeolite; 4 - base diet + 1.5% sodium bicarbonate; and 5 - base diet + 1.5% sodium sesquicarbonate. Results showed that rumen pH increased and ammonia nitrogen concentration decreased in diets containing buffer in comparison to control diet (P < 0.05). Rumen concentration of acetate and acetate to propionate ratio showed reduction in experimental diets compared to control (P < 0.05). The concentration of propionate in control diet increased significantly compared to diets receiving buffer (P < 0.05). Using 1.5% sodium bicarbonate in the diet causes a significant increase in rumen protozoa population compared to the control group (P < 0.05). There was no significant difference in dry matter intake and growth performance of lambs. Generally, the effects of using 2% of zeolite were competitive with the effects of other buffers, and caused an increase in the rumen pH and concentration of the acetate. Therefore, the use of buffer in fattening lambs ration fed moderate concentrate diets is beneficial, and it is possible to use low-cost zeolite buffer in the ration of livestock as an alternative to sodium bicarbonate and/or sodium sesquicarbonate.


Assuntos
Arabis , Zeolitas , Ração Animal/análise , Animais , Bicarbonatos , Fermentação , Rúmen/metabolismo , Ovinos , Bicarbonato de Sódio/metabolismo
19.
Ecol Lett ; 23(5): 870-880, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32216007

RESUMO

Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven-year-long demographic study on the perennial plant Arabis alpina (L.) across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilising population dynamics at range margins.


Assuntos
Arabis , Plantas , Demografia , Dinâmica Populacional , Processos Estocásticos
20.
New Phytol ; 227(1): 99-115, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32022273

RESUMO

Perennials have a complex shoot architecture with axillary meristems organized in zones of differential bud activity and fate. This includes zones of buds maintained dormant for multiple seasons and used as reservoirs for potential growth in case of damage. The shoot of Arabis alpina, a perennial relative of Arabidopsis thaliana, consists of a zone of dormant buds placed between subapical vegetative and basal flowering branches. This shoot architecture is shaped after exposure to prolonged cold, required for flowering. To understand how vernalization ensures the maintenance of dormant buds, we performed physiological and transcriptome studies, followed the spatiotemporal changes of auxin, and generated transgenic plants. Our results demonstrate that the complex shoot architecture in A. alpina is shaped by its flowering behavior, specifically the initiation of inflorescences during cold treatment and rapid flowering after subsequent exposure to growth-promoting conditions. Dormant buds are already formed before cold treatment. However, dormancy in these buds is enhanced during, and stably maintained after, vernalization by a BRC1-dependent mechanism. Post-vernalization, stable maintenance of dormant buds is correlated with increased auxin response, transport, and endogenous indole-3-acetic acid levels in the stem. Here, we provide a functional link between flowering and the maintenance of dormant buds in perennials.


Assuntos
Arabis , Arabis/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA